An exact solution of the nonlinear differential equation $\ddot y+p(t)y=q_{m} (t)/y^{2m-1}$
HTML articles powered by AMS MathViewer
- by James L. Reid
- Proc. Amer. Math. Soc. 27 (1971), 61-62
- DOI: https://doi.org/10.1090/S0002-9939-1971-0269907-4
- PDF | Request permission
Abstract:
An exact solution of the nonlinear differential equation $\ddot y + p(t)y = {q_m}(t)/{y^{2m - 1}}$ is found to be $y = {[{u^m} + c{(m - 1)^{ - 1}}{W^{ - 2}}v]^{1/m}}$ if ${q_m}(t) = c{(uv)^{m - 2}}$. $u$ and $v$ are independent solutions of $\ddot y + p(t)y = 0$ and $W$ is their Wronskian.References
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 61-62
- MSC: Primary 34.02
- DOI: https://doi.org/10.1090/S0002-9939-1971-0269907-4
- MathSciNet review: 0269907