Torsionfree projective modules
HTML articles powered by AMS MathViewer
- by Mark L. Teply
- Proc. Amer. Math. Soc. 27 (1971), 29-34
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271146-8
- PDF | Request permission
Abstract:
In this paper, the following condition for a torsion theory in the sense of S. E. Dickson is examined: ($\text {P}$) Every nonzero torsionfree module contains a nonzero projective submodule. A special relationship between condition ($\text {P}$) and Goldie’s torsion theory is shown; and the rings, for which every nontrivial torsion theory satisfies condition ($\text {P}$), are classified.References
- J. S. Alin and S. E. Dickson, Goldie’s torsion theory and its derived functor, Pacific J. Math. 24 (1968), 195–203. MR 227249
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Robert L. Bernhardt, Splitting hereditary torsion theories over semiperfect rings, Proc. Amer. Math. Soc. 22 (1969), 681–687. MR 244324, DOI 10.1090/S0002-9939-1969-0244324-2
- John H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR 258886, DOI 10.1090/S0002-9904-1970-12370-9
- Spencer E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235. MR 191935, DOI 10.1090/S0002-9947-1966-0191935-0
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Ross M. Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133–1137. MR 217059, DOI 10.1090/S0002-9939-1967-0217059-8
- Mark L. Teply, Some aspects of Goldie’s torsion theory, Pacific J. Math. 29 (1969), 447–459. MR 244323
- Mark L. Teply, Homological dimension and splitting torsion theories, Pacific J. Math. 34 (1970), 193–205. MR 274528
- Darrell R. Turnidge, Torsion theories and semihereditary rings, Proc. Amer. Math. Soc. 24 (1970), 137–143. MR 255601, DOI 10.1090/S0002-9939-1970-0255601-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 29-34
- MSC: Primary 16.40
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271146-8
- MathSciNet review: 0271146