$L^{2}$ asymptotes for the Klein-Gordon equation
HTML articles powered by AMS MathViewer
- by Stuart Nelson
- Proc. Amer. Math. Soc. 27 (1971), 110-116
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271561-2
- PDF | Request permission
Abstract:
An approximation $a(x,t)$ is obtained for solutions $u(x,t)$ of the Klein-Gordon equation. $a(x,t)$ can be expressed in terms of the Fourier transforms of the Cauchy data and it is shown that $||a( \cdot ,t) - u( \cdot ,t)|{|_2} \to 0$ as $t \to \infty$. This result is applied to show how energy distributes among various conical regions.References
- A. R. Brodsky, On the asymptotic behavior of solutions of the wave equations, Proc. Amer. Math. Soc. 18 (1967), 207–208. MR 212417, DOI 10.1090/S0002-9939-1967-0212417-X —, Asymptotic decay of solutions to the relativistic wave equation, Thesis, M.I.T., Cambridge, Mass., 1964.
- Walter Littman, Maximal rates of decay of solutions of partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 1273–1275. MR 245964, DOI 10.1090/S0002-9904-1969-12391-8
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Stuart Nelson, On some solutions to the Klein-Gordon equation related to an integral of Sonine, Trans. Amer. Math. Soc. 154 (1971), 227–237. MR 415049, DOI 10.1090/S0002-9947-1971-0415049-9
- Stuart Nelson, $L^{2}$ asymptotes for Fourier transforms of surface- carried measures, Proc. Amer. Math. Soc. 28 (1971), 134–136. MR 283491, DOI 10.1090/S0002-9939-1971-0283491-0 I. E. Segal, Quantization and dispersion for non-linear relativistic equations, Proc. Conference Mathematical Theory of Elementary Particles (Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, pp. 79-108. MR 36 #542.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 110-116
- MSC: Primary 35.79
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271561-2
- MathSciNet review: 0271561