EXTENDING FREE CIRCLE ACTIONS ON SPHERES TO S^3 ACTIONS

BRUCE CONRAD

Abstract. Let X be a PL homotopy CP^{k+1} corresponding by Sullivan's classification to the element $(N_1, \alpha_1, N_2, \ldots, \alpha_k, N_k)$ of $Z \oplus Z_2 \oplus Z \oplus \cdots \oplus Z_2 \oplus Z$.

Theorem 1. The topological circle action on S^{4k+2} with orbit space X is the restriction of an S^3 action with a triangulable orbit space iff $\alpha_i = 0$, $i = 2, \ldots, k$; and $N_1 \equiv 0 \mod 2$; and $\sum (-1)^i N_i = 0$.

If X admits a smooth structure and satisfies the hypotheses of Theorem 1, a certain smoothing obstruction arising from the integrality theorems vanishes for the corresponding S^3 action.

In this note we establish some necessary conditions for extending smooth free circle actions on homotopy $(4k+3)$-spheres to free S^3 actions (S^3 is the group of unit quaternions). It is known that the orbit space of a free circle action on a homotopy sphere Σ^{4k+3} is a manifold X^{4k+2} with the homotopy type of complex projective space CP^{2k+1}, while the orbit space of an S^3 action is a homotopy quaternionic projective space Y^{2k}. If the circle action is the restriction of the S^3 action (by the maximal torus theorem, the restriction is unique), then X^{4k+2} is an S^2 bundle over Y^{2k}; in fact this bundle is induced by a homotopy equivalence $Y^{2k} \to QP^k$ from the natural fibering $CP^{2k+1} \to QP^k$. In terms of D. Sullivan's classification up to PL isomorphism of PL homotopy complex projective spaces [7] we are able to state in Theorem 1 necessary and sufficient conditions for a homotopy complex projective space X^{4k+2} to fiber in such a way over some PL homotopy quaternionic projective space. We also show that if $k > 1$ the PL isomorphism class of the orbit space Y^{2k} of an S^3 action on Σ^{4k+3} is determined by the restricted circle action (the case $k = 1$ is of course equivalent to the four dimensional Poincaré conjecture; in this case Theorem 1 implies that only the standard circle action on S^7 extends to an S^3 action).

A smooth circle action satisfying the hypotheses of Theorem 1 will thus extend to a topological S^3 action with a triangulable orbit space.
It is not known whether additional hypotheses will be necessary to ensure the existence of a smooth extension; as a partial result we define a smoothing obstruction which, although it fails to vanish for many piecewise linear homotopy quaternionic projective spaces, does vanish for orbit spaces of S^3 actions which extend smooth circle actions. In particular, if a smooth circle action on a homotopy S^{11} satisfies the hypotheses of Theorem 1, it is shown that the topological action to which it extends can be smoothed.

The results in §1 formed a portion of my Ph.D. thesis, written under the supervision of Professor G. E. Bredon, to whom I express gratitude.

1. Fibering homotopy complex projective spaces. Let E_0 be the canonical 4-disc bundle over Q^{P_k}. The circle group acts on E_0 in a fiber preserving manner; let \overline{E}_0 denote the orbit space. It is clear that \overline{E}_0 is a 3-disc bundle over Q^{P_k} with boundary $\partial \overline{E}_0 = CP^{2k+1}$. Recall that if M is a closed smooth manifold, an h-smoothing of M is a homotopy equivalence $f: X \to M$ where X is also a closed smooth manifold. We will say that an h-smoothing $f: X \to CP^{2k+1}$ fibers if there is an h-smoothing $\tilde{g}: Y \to Q^{P_k}$ such that, denoting g^*E_0 by \overline{E}_Y, the induced h-smoothing $\tilde{g}: \partial \overline{E}_Y \to \partial \overline{E}_0 = CP^{2k+1}$ is concordant to f (i.e. there is a diffeomorphism $c: X \to \overline{E}_Y$ such that $\tilde{g}c \simeq f$). Obviously a free circle action on a homotopy S^{4k+3} extends to an S^3 action iff its orbit space fibers.

Fibering is also a sensible notion for an h-triangulation (the PL analogue of an h-smoothing) of CP^{2k+1}. Given an h-triangulation $g: Y \to Q^{P_k}$, let K_Y be a triangulation (in the sense of [6]) of E_Y. Then an h-triangulation $f: X \to CP^{2k+1}$ fibers if it is concordant to an h-triangulation $g: \partial K_Y \to \partial \overline{E}_0$ for some h-triangulation $g: Y \to Q^{P_k}$. An h-triangulation of CP^{2k+1} fibers when and only when the corresponding topological action of the circle on S^{4k+3} extends to an S^3 action with a triangulable orbit space.

D. Sullivan [7] has classified h-triangulations of CP^n and Q^{P_n} up to concordance in the following way. If $f: X \to CP^n$ is an h-triangulation, alter f if necessary to make it transverse regular on $CP^i \subset CP^n$, and let

$$K_i = \text{Ker} f_*: H_i(f^{-1}(CP^i); \mathbb{Z}) \to H_i(CP^i; \mathbb{Z}).$$

If i is even, the intersection form on K_i is symmetric with index $\tau(K_i)$; put $N_{i/2}(f) = \frac{1}{2} \tau(K_i)$. If i is odd, the intersection form is antisymmetric; we denote its Arf invariant by $\alpha_{(i+1)/2}(f)$. Sullivan proved that if $n > 2$ the integers $N_i(f)$ and the mod 2 integers $\alpha_k(f)$ are a complete set of invariants for the concordance class of f, and that any
pair \((\alpha_2, \cdots, \alpha_p)\); \((N_1, \cdots, N_q)\), with \(p = \lfloor n/2 \rfloor\) and \(q = \lfloor (n-1)/2 \rfloor\), occurs as the invariants of some \(h\)-triangulation of \(CP^n\). The case of \(QP^m\) is a little simpler. If \(g: Y \to QP^m\) is an \(h\)-triangulation which is transverse regular on \(QP^m\), put
\[
K_i = \ker g_*: H_{2i}(g^{-1}(QP^0)) \to H_{2i}(QP^0), \quad \text{and} \quad M_i(g) = \frac{1}{i} \text{index } (K_i).
\]
The integers \(M_i(g)\) are a complete set of invariants for the concordance class of \(g\) if \(m > 1\). Since \(QP^1 = S^4\) is a spin manifold, \(M_1(g)\) must be even; but any \((m-1)\)-tuple \((M_1, \cdots, M_{m-1})\) with \(M_1\) even will occur as invariants of some \(h\)-triangulation. To simplify our notation, put \(M_0(g) = M_m(g) = 0\).

Theorem 1. An \(h\)-triangulation \(f: X \to CP^{2k+1}\) fibers iff the following conditions are satisfied:

1. \(\alpha_i(f) = 0, i = 2, \cdots, k\).
2. \(N_i(f)\) is even.
3. \(\sum_{i=1}^{k} (-1)^i N_i(f) = 0\).

Proof. We establish first the necessity of condition 1. Thus suppose \(g: Y \to QP^k\) is an \(h\)-triangulation, and identify \(X\) with \(dK_Y\) via a concordance. In \(E_0\), \(CP^{2i-1}\) bounds the restricted bundle \(E_0| QP^i-1\). It then follows from \([9]\) that the surgery obstruction to making \(f\) \(h\)-regular on \(CP^{2i-1}\) vanishes. This surgery obstruction is just \(\alpha_i(f)\).

The proof is completed by the following

Lemma. If \(g: Y \to QP^k\) is an \(h\)-triangulation, and \(\bar{g}: \partial K_Y \to \partial E_0 = CP^{2k+1}\) is the induced \(h\)-triangulation, then
\[
N_i(\bar{g}) = M_i(g) + M_{i-1}(g).
\]

Proof. For a PL manifold \(M\), let \(P(M) = 1 + p_1(M) + \cdots\) be the total rational Pontrjagin class. Then, if we put \(X = \partial K_Y\) and \(l: X \to K_Y\) is the inclusion, \(\pi: K_Y \to Y\) the projection, we have \(P(X) = l^*\pi^* [P(Y)g_*P(\bar{E}_0)]\).

Hirzebruch has shown that \(P(\bar{E}_0) = 1 + 4\rho\), where \(\rho\) is the generator of \(H^4(QP^k; \mathbb{Z})\) dual to \(QP^{k-1}\) \([3]\). Put \(y = g^*\rho \otimes 1 \in H^4(Y; Q)\). If \(i\) is the generator of \(H^2(CP^{2k+1}; \mathbb{Z})\) dual to \(CP^{2k}\), put \(x = \bar{g}^*i \otimes 1 \in H^2(X; \mathbb{Z})\), and notice that \(l^*\pi^*(y) = x^2\). Therefore,

\[
(1) \quad P(X) = l^*\pi^* P(Y) \cdot (1 + 4x^2).
\]

Now suppose \(\bar{g}\) is transverse regular on \(CP^{2i} \subset CP^{2k+1}\) and let \(V_i = f^{-1}(CP^{2i})\); notice that index \(V_i = 8N_i(\bar{g}) + 1\).

According to \([8]\) the virtual index formula of Hirzebruch \([4, \S 9]\) is
valid for PL manifolds. Let \(L(M) = 1 + L_1(M) + \cdots \) be the total Hirzebruch class of the manifold \(M \). An application of the virtual index formula to \(X \) yields

\[
\text{index } V_i = 8N_i(\delta) + 1 = \langle (\tanh x)^2(k_i-1)+1L(X),[X] \rangle.
\]

From (1) it follows that

\[
L(X) = l^*\pi^*L(Y) \frac{2x}{\tanh(2x)};
\]

applying a hyperbolic identity,

\[
(tanh x)L(X) = l^*\pi^*L(Y)(1 + \tanh^2 x) \cdot x.
\]

Applying (2),

\[
8N_i(\delta) + 1 = \langle l^*\pi^*L(Y)(\tanh^2 x)^{k-i}(1 + \tanh^2 x), [X] \rangle
\]

The Thom class of the bundle \(E_Y \) is \(\delta x \), where \(\delta : H^2(X; Q) \rightarrow H^3(K_Y, X; Q) \) is the coboundary.

If \([K_Y] \in H_{4n+3}(K_Y, X; Z)\) is an orientation, we may assume \(\partial [K_Y] = [X] \) and \(\partial x \cap [K_Y] = [Y] \). From (3) it follows that

\[
8N_i(\delta) + 1 = \langle \delta \{ l^*\pi^*L(Y)(\tanh^2 x)^{k-i}(1 + \tanh^2 x) \cdot x \}, [K_Y] \rangle
\]

The normal bundle of \(QP^j \subset QP^k \) is \((k-j)E_0\); its Pontrjagin class is \((1+\rho)^{2k-2j}\). If \(g \) is transverse regular to \(QP^j \) and \(W_j = g^{-1}(QP^j) \) then \(h^*P(Y) = P(W_j) \cdot h^*g^*(1+\rho \otimes 1)^{2k-2j}; \ h : W_j \rightarrow Y \) being the inclusion. Thus

\[
h^*L(Y) = L(W_j) \cdot h^* \left(\frac{\sqrt{y}}{\tanh \sqrt{y}} \right)^{2k-2j}
\]

and

\[
\text{index } W_j = \langle L(W_j), [W_j] \rangle
\]

\[
= \langle L(Y) \cdot \left(\frac{\tanh \sqrt{y}}{\sqrt{y}} \right)^{2k-2}, [Y] \rangle
\]

Comparing (4),

\[
8N_i(\delta) + 1 = \text{index } W_i + \text{index } W_{i-1}.
\]

Since index \(W_j = 8M_j(g) \) if \(j \) is odd and \(8M_j(g) + 1 \) if \(j \) is even, \(N_i(\delta) = M_i(g) + M_{i-1}(g) \).
Remark. The lemma shows that the concordance class of g is determined by that of g if $k > 1$. In terms of S^3 actions, the equivariant homeomorphism class of an S^3 action on S^{2k+1} ($k > 1$) is determined by the circle action to which it restricts. In case $k = 1$, Theorem 1 may be applied to the classification of smooth circle actions on S^7 to show that only the standard circle action extends to an S^3 action; see [5].

2. An obstruction to smoothing an h-triangulation. Consider the case of an h-triangulation $f: M \to S$ of a smooth manifold S. Such an h-triangulation is concordant to an h-smoothing if there is an h-smoothing $f': M' \to S$ and a piecewise differentiable homeomorphism $k: M \to M'$ such that $f'k \simeq f$.

Ω^spin_* is to be the spin bordism ring. If X is a space, $\Omega^\text{spin}_*(X)$ will denote by analogy with [1] the spin bordism group of X. Returning to the h-triangulation $f: M \to S$, let $\eta: P \to S$ represent an element of $\Omega^\text{spin}_*(S)$. If we replace both M and S by their products with a sphere of high enough dimension, we can assume η is an embedding. Approximate f by a map transverse regular to $\eta(P)$, and put $Q = f^{-1}(\eta(P))$. Then define $\mu_f(\eta) = \langle \hat{A}(Q), [Q] \rangle$, where $\hat{A} = 1 + \hat{A}_1 + \cdots$ is the multiplicative sequence associated with $\frac{1}{2} \sqrt{2}/\sinh \frac{1}{2} \sqrt{2}$.

Proposition. $\mu_f(\eta)$ depends only on the element of $\Omega^\text{spin}_*(S)$ represented by η and the homotopy class of f. If we allow Ω^spin_* to act on Q via \hat{A} then $\mu_f: \Omega^\text{spin}_*(S) \to Q$ is an Ω^spin_*-homomorphism. If f is concordant to an h-smoothing, μ_f takes integral values.

Proof. The first part follows from a straightforward application of relative transversality and oriented bordism invariance of Pontryagin numbers; details are omitted. If an embedding $\eta: P \to S$ represents an element of $\Omega^\text{spin}_*(S)$ and $\{ U \} \in \Omega^\text{spin}_{m+1}$ then by embedding U in S', l large, $\{ U \} \cdot \{ \eta \}$ is represented by an embedding $U \times P \to S' \times S$; if f is transverse regular to P then id $\times f: S' \times M \to S' \times S$ is transverse regular to $U \times P$, with $(id \times f)^{-1}(U \times P) = U \times Q$. The second part follows then from the multiplicative property of the \hat{A} genus. Finally, if f is concordant to an h-smoothing then Q may be taken to be a smooth spin manifold. The statement about the integrality of μ_f is then a consequence of the differentiable Riemann-Roch theorem; see [4, p. 197].

Theorem 2. If $g: Y \to QP^k$ is an h-triangulation such that $\partial Y = \partial \Sigma_{k+1} CP^{2k+1}$ is concordant to an h-smoothing, then $\mu_g: \Omega^\text{spin}_*(QP^k) \to Q$ takes integral values.
Proof. It will suffice to check this on $\Omega^{\text{spin}}_4(QP^k)$ since μ vanishes on components of dimension $\equiv 0 \mod 4$. Let $\eta: P \to QP^k$ represent an element of $\Omega^{\text{spin}}_4(QP^k)$; assume that η is an embedding. If $p: CP^{2k+1} \to QP^k$ is the natural projection, let $R = p^{-1}(P)$ and notice that R is a spin manifold of dimension $4i+2$. Approximate g by a map transverse regular on P and let $Q = g^{-1}(P)$, $N = g^{-1}(R)$, and $K_0 = \pi^{-1}(Q)$, so that $\partial K_0 = N$. Since N admits the structure of a smooth spin manifold, $\langle \exp(c)A(N), [N]\rangle$ is integral if c is any element of $H_2(N; \mathbb{Z})$ [4, p. 197]. Since dimension $(N) \equiv 2 \mod 4$, $\langle \exp(c)A(N), [N]\rangle = \langle \sinh(c)A(N), [N]\rangle$.

Now, $P(N) = l^*\pi^*P(Q)(1 + 4x^2)$ where l, π, and x have been restricted to N, K_0 and N, respectively; compare (1). Therefore $l^*\pi^*A(Q) = A(N) \cdot (\sinh x)/x$, and since $\mu_0(\eta) = \langle A(Q), [Q]\rangle$, we have

$$\mu_0(\eta) = \langle \pi^*A(Q), [K_0] \cap \delta x \rangle = \langle \delta(l^*\pi^*A(Q) \cdot x), [K_0]\rangle$$

$$= \langle A(N) \cdot \sinh x, [N]\rangle \in \mathbb{Z}.$$

In case η is not an embedding, this proof may be modified by replacing each of X, Y, CP^{2k+1}, and QP^k by its product with S^l and approximating η by an embedding of P into $QP^k \times S^l$.

Remarks. If $I: QP^k \to QP^k$ is the identity map and the $(4k-1)$-skeleton of Y is smooth, then $\mu_0(I)$ is just the Eells-Kuiper invariant [2] of the boundary of a smoothing of $Y_0 = Y - \langle \text{open ball} \rangle$. In particular it follows that an h-triangulation of QP^2 is concordant to an h-smoothing iff $\mu_0(I)$ is integral. For an h-triangulation of QP^3 the necessary and sufficient condition is that $\mu_0(QP^3)$ be integral and $\mu_0(I)$ be even. For higher dimensions more complicated smoothing obstructions must be considered; generally $\mu_0 \mod 2$ is an obstruction on components of dimension $\equiv 4 \mod 8$ but this refinement may still fail to detect certain nonsmoothable h-triangulations of QP^4.

Finally, we have not solved the problem of extending smooth circle actions on homotopy spheres to smooth S^8 actions for homotopy spheres of dimension greater than seven. In dimension 11, although a topological extension of a smooth circle action can be smoothed if its orbit space is triangulable, it is conceivable that the smoothing would be inconsistent with the circle action.

References

2. J. Eells, Jr., and N. H. Kuiper, Closed manifolds which admit nondegenerate

Temple University, Philadelphia, Pennsylvania 19122