A CHARACTERIZATION OF ORDER TOPOLOGIES BY MEANS OF MINIMAL T_π-TOPOLOGIES

W. J. THRON AND SUSAN J. ZIMMERMAN

Abstract. In this article we give a purely topological characterization for a topology τ on a set X to be the order topology with respect to some linear order R on X, as follows. A topology τ on a set X is an order topology iff (X, τ) is a T_π-space and τ is the least upper bound of two minimal T_π-topologies [Theorem 1]. From this we deduce a purely topological description of the usual topology on the set of all real numbers. That is, a topological space (X, τ) is homeomorphic to the reals with the usual topology iff (X, τ) is a connected, separable, T_π-space, and τ is the least upper bound of two noncompact minimal T_π-topologies [Theorem 2].

1. Introduction. The concept of the order topology on a linearly ordered set goes back at least to Haar and König (1911) and is the following:

Definition 1. A topology τ on a set X is an order topology on X iff there is a linear order R on X such that the sets of the forms

$$\{y : y < x\} \text{ and } \{y : x < y\},$$

where $x \in X$, form a subbase for τ.

In this definition and in what follows, we use the convention that, if R is a pre-order relation and $(a, b) \in R$, we may also write $a \leq b$. If, in addition, $a \neq b$, we write $a < b$. The symbol $a \geq b$ means, technically, that $(a, b) \in R^{-1}$, where $R^{-1} = \{(x, y) : (y, x) \in R\}$, and $a > b$ is defined similarly. Whenever it is desirable to emphasize the particular relation R, we will write $a \leq_R b$ and do likewise for the other three symbols.

There have been, historically, several topological characterizations of intervals in the real line, which are in the same spirit as our Theorem 2. Sierpinski (1917), Hausdorff (1927), and Pauc (1936), among others, gave topological characterizations of the linear continuum $[0, 1]$, also known as the Jordan arc. Sierpiński worked within Euclidean n-space, while Hausdorff and Pauc used general metric spaces. In 1936 Ward, using a condition similar to Hausdorff’s, characterized the open interval $(0, 1)$ as a connected locally...
connected separable metric space X such that for each $x \in X$, $X \sim \{x\}$ has precisely two components [15, p. 191]. Franklin and Krishnarao [3] have recently pointed out that Ward’s characterization still holds when “metric” is replaced by “regular.” Eilenberg in 1941 extended Pauc’s result to show that a connected locally connected separable topological space X is homeomorphic to a subinterval of $[0, 1]$ iff $\{(x, y) : x \neq y\}$ is not connected in the product topology on $X \times X$ [2, p. 43].

Both of our theorems depend on the following result, recently obtained by Larson [7, p. 453] and Pahk [10, p. 7]. We note that a topology \mathfrak{T} on X is nested iff \mathfrak{T} is a nested family of sets; that is, iff, for all $G, H \in \mathfrak{T}$, $G \subseteq H$ or $H \subseteq G$.

Theorem A. A T_0-topological space (X, \mathfrak{T}) is minimal T_0 iff \mathfrak{T} is nested and the set of all complements of point closures, $\{\sim \{x\} : x \in X\}$ $\cup \{X\}$, forms a base for \mathfrak{T}.

2. **Proof of Theorem 1.** We first give a brief description of the lattice structure on the set of topologies on a set X and then prove two lemmas.

The set, Σ, of all topologies on a fixed set X forms a lattice when ordered by set inclusion. For any two topologies \mathfrak{T}_1 and \mathfrak{T}_2 on X, the least upper bound, $\mathfrak{T}_1 \vee \mathfrak{T}_2$, is the smallest topology containing $\mathfrak{T}_1 \cup \mathfrak{T}_2$, and is not, in general, $\mathfrak{T}_1 \cup \mathfrak{T}_2$. However, if \mathfrak{B}_1 and \mathfrak{B}_2 are bases for \mathfrak{T}_1 and \mathfrak{T}_2, respectively, then $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is a subbase for $\mathfrak{T}_1 \vee \mathfrak{T}_2$ and $\{B_1 \cap B_2 : B_1 \in \mathfrak{B}_1$ and $B_2 \in \mathfrak{B}_2\}$ is a base for $\mathfrak{T}_1 \vee \mathfrak{T}_2$.

With each topology $\mathfrak{T} \in \Sigma$, it is possible to associate a relation $R_\mathfrak{T}$ defined by $(a, b) \in R_\mathfrak{T}$ iff every open set containing b contains a. It is clear that $R_\mathfrak{T}$ is always reflexive and transitive and hence a pre-order relation. Ore in his paper of 1943 defined such a relation for each closure operator (not necessarily topological) on X. In this more general context, he also proved the first part of Lemma 1 [9, p. 763]. In fact, the function

$$\varphi : \mathfrak{T} \rightarrow R_\mathfrak{T}$$

is an order “antihomomorphism,” because $\mathfrak{T}_1 \subseteq \mathfrak{T}_2 \Rightarrow R_{\mathfrak{T}_1} \subseteq R_{\mathfrak{T}_2}$. Steiner [13, p. 383] has shown that, when restricted to the principal topologies on X, φ is actually a lattice anti-isomorphism. This same φ, when restricted to minimal T_0-topologies on X, describes a 1-1 correspondence between the minimal T_0-topologies on X and the linear order relations on X (see Lemma 2) and provides the basis for the proof of Theorem 1.
Lemma 1. If \mathcal{S} is any topology on X, then

(i) \mathcal{S} is T_0 iff P_3 is a partial order, and

(ii) \mathcal{S} is nested iff P_3 is such that, for all $a, b \in X$, $(a, b) \in P_3$ or $(b, a) \in P_3$.

Proof. (i) If \mathcal{S} is T_0, then, whenever $(x, y) \in P_3$ and $(y, x) \in P_3$, x must equal y, because every neighborhood of y contains x and every neighborhood of x contains y. Thus P_3 is antisymmetric and a partial order.

If P_3 is a partial order, suppose x and y are distinct points of X and that every neighborhood of x contains y. That is, $(y, x) \in P_3$ and $x \neq y$. Therefore, since P_3 is a partial order, $(x, y) \in P_3$ and there is a neighborhood N_x of y such that $x \in N_y$.

(ii) If \mathcal{S} is nested, let $x, y \in X$ and suppose $(x, y) \in P_3$. Then there is an open set G with $y \in G$ and $x \in G$. Let H be any open set containing x. Then $x \in G \Rightarrow H \subseteq G \Rightarrow G \subseteq H \Rightarrow y \in H$. That is, every open set containing x contains y and $(y, x) \in P_3$.

Now let P_3 be such that for all $a, b \in X$, $(a, b) \in P_3$ or $(b, a) \in P_3$. Let $G, H \in \mathcal{S}$ and assume $H \subseteq G$. Then there is an $h \in H$ with $h \in G$. Let x be any element of G. Then $h \in G \Rightarrow (h, x) \in P_3 \Rightarrow (x, h) \in P_3 \Rightarrow x \in H$, because $h \in H \subseteq \mathcal{S}$. Thus $G \subseteq H$ and \mathcal{S} is nested.

Using Lemma 1 together with Theorem A, we have the following

Corollary 1. A topological space (X, \mathcal{S}) is minimal T_0 iff P_3 is linear and $\{ \{y : y < x\} : x \in X\} \cup \{X\}$ is a base for \mathcal{S} (where $a \leq b$ iff $(a, b) \in P_3$).

Proof. If \mathcal{S} is minimal T_0, then \mathcal{S} is T_0 and nested by Theorem A. Thus P_3 is linear by Lemma 1, because a linear order is just a totally ordered partial order. For each $x \in X$,

$$\sim \{x\} = \sim \{y : \text{every neighborhood of } y \text{ contains } x\}$$

$$= \sim \{y : x \leq y\}$$

$$= \{y : y < x\},$$

because P_3 is linear. Therefore, $\{ \{y : y < x\} : x \in X\} \cup \{X\}$ is a base for \mathcal{S}.

Conversely, if P_3 is linear and $\{ \{y : y < x\} : x \in X\} \cup \{X\}$ forms a base for \mathcal{S}, then \mathcal{S} is T_0 and nested by Lemma 1. Furthermore, since P_3 is linear,

$$\sim \{x\} = \sim \{y : x \leq y\} = \{y : y < x\}$$

for each $x \in X$, and $\sim \{x\} : x \in X\} \cup \{X\}$ is a base for \mathcal{S}. Thus \mathcal{S} is minimal T_0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 2. Let \(\varphi : 3 \to R_3 \) be restricted to the minimal \(T_v \)-topologies on \(X \). For each linear ordering, \(R \), of \(X \), let \(\mu(R) \) be the topology with base
\[\{ \{ y : y <_{R_3} x \} : x \in X \} \cup \{ X \} \]. Then \(\mu \) is an inverse for \(\varphi \) and hence \(\varphi \) is a 1-1 map of the minimal \(T_v \)-topologies onto the linear orders of \(X \).

Proof. If \(3 \) is a minimal \(T_v \)-topology, then \(R_3 = \varphi(3) \) is linear. By Corollary 1, a base for \(3 \) is
\[\{ \{ y : y <_{R_3} x \} : x \in X \} \cup \{ X \} \]. But by definition, this is also a base for \(\mu(R_3) = \mu(\varphi(3)) \). Therefore, \(3 = \varphi(\mu(3)) \).

Now let \(R \) be a linear order and let \(3 = \mu(R) \). Then \(3 \) has base
\[C = \{ \{ y : y <_{R_3} x \} : x \in X \} \cup \{ X \} \]. If \((a, b) \in R \) and \(N_b \) is any open neighborhood of \(b \), then there is a set \(B \in C \) such that \(b \in B \subseteq N_b \). If \(B = X \), then clearly \(a \in B \subseteq N_b \). If \(B \neq X \), then \(B = \{ x : x <_{R_C} c \} \) for some \(c \in X \). Then \(b \in B \Rightarrow a \leq_{R_C} b \Rightarrow a \leq_{R_C} a \Rightarrow a \in B \subseteq N_b \). That is, \((a, b) \in R_3 = \varphi(3) \), and thus \(R \subseteq \varphi(3) \). Let \((a, b) \in \varphi(3) = R_3 \). If \(b <_{R_3} a \), then \(\{ x : x <_{R_C} a \} \) is an open set in \(3 \) containing \(b \) but not \(a \), which contradicts \((a, b) \in R_3 \). Hence, \(R = \varphi(3) = \varphi(\mu(R)) \), and \(\varphi \) and \(\mu \) are inverses.

Theorem 1. A topology \(3 \) on a set \(X \) is an order topology iff \((X, 3) \) is a \(T_1 \)-space and \(3 \) is the least upper bound of two minimal \(T_v \)-topologies.

Proof. If \(3 \) is the order topology on \(X \) associated with the linear order \(R \), then \(3 \) is generated by all sets of the forms
\[\{ y : y < x \} \quad \text{and} \quad \{ y : x < y \} \].

It is clear from the linearity of \(R \) that \(3 \) is \(T_1 \). Let \(3_1 \) be the topology with base
\[C_1 = \{ \{ y : y < x \} : x \in X \} \cup \{ X \} \],

and let \(3_2 \) be the topology with base
\[C_2 = \{ \{ y : y > x \} : x \in X \} \cup \{ X \} \].

Then, by Lemma 2, \(3_1 \) and \(3_2 \) are minimal \(T_v \)-topologies, and \(R_3_1 = R \) while \(R_3_2 = R^{-1} \). \(C_1 \cup C_2 \) is a subbase for \(3_1 \cap 3_2 \), but is also a subbase for \(3 \). Therefore, \(3 = 3_1 \cap 3_2 \) is the least upper bound of two minimal \(T_v \)-topologies.

Conversely, suppose \(3 = 3_1 \cap 3_2 \) where \(3_1 \) and \(3_2 \) are minimal \(T_v \)-topologies and \(3 \) is \(T_1 \). Then \(R_3_1 \) and \(R_3_2 \) are linear. If \((a, b) \in R_3_1 \cap R_3_2 \) where \(a \neq b \), let \(G \) be an open set in \(3_1 \cap 3_2 \) containing \(b \). Then there exist sets \(G_1 \subseteq 3_1 \) and \(G_2 \subseteq 3_2 \) such that \(b \in G_1 \cap G_2 \subseteq G \). But then \((a, b) \in R_3_1 \cap R_3_2 \Rightarrow a \in G_1 \) and \(a \in G_2 \Rightarrow a \in G_1 \cap G_2 \subseteq G \). That is, every neighborhood of \(b \) in \(3 \) contains \(a \), which is impossible when \(3 \) is \(T_1 \). Therefore, for \(a \neq b \),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A CHARACTERIZATION OF ORDER TOPOLOGIES

\[\langle a, b \rangle \in R_{3_2} \Rightarrow \langle a, b \rangle \in R_{3_1} \Rightarrow \langle b, a \rangle \in R_{3_1} \Leftrightarrow \langle a, b \rangle \in R_{3_1}^{-1} \]

Hence \(R_{3_2} = R_{3_1}^{-1} \), and, since \(3_1 \) and \(3_2 \) are minimal \(T_0 \), they have bases

\[\mathcal{B}_1 = \{ \{ y : y < x \} : x \in X \} \cup \{ X \} \quad \text{and} \quad \mathcal{B}_2 = \{ \{ y : y > x \} : x \in X \} \cup \{ X \}, \]

respectively, where \(a \leq b \) iff \(\langle a, b \rangle \in R_3 \). Therefore, \(\mathcal{B}_1 \cup \mathcal{B}_2 \) is a subbase for \(3_1 \cap 3_2 = 3 \). But \(\mathcal{B}_1 \cup \mathcal{B}_2 \) also generates the order topology on \((X, R_3) \), which must therefore be \(3 \).

3. Proof of Theorem 2. Our characterization of the reals hinges on two well-known ideas: first of all, on the correspondence between order and topological properties of ordered spaces, and secondly, on the characterization of the natural order on the reals developed by Cantor and Hausdorff. We adopt the following definitions of some common order properties:

Definition 2. Let \(A \) be a linear order on \(X \). Then

(i) \((X, R) \) is complete iff every subset of \(X \) bounded above has a least upper bound;

(ii) \(A \subset X \) is dense in \((X, R) \) iff whenever \(x < y \) there is an element \(z \in A \) such that \(x < z < y \);

(iii) \((X, R) \) is dense iff \(X \) is dense in \((X, R) \).

The following relations between these order properties and the corresponding order topologies are well known:

Theorem B. If \(R \) is a linear order on \(X \) and \(\mathfrak{3} \) is the associated order topology, then \((X, \mathfrak{3}) \) is connected iff \((X, R) \) is complete and dense.

Theorem C. If \(R \) is a dense linear order on \(X \) and \(\mathfrak{3} \) is the associated order topology, then \((X, \mathfrak{3}) \) is separable iff \((X, R) \) has a countable dense subset.

Eilenberg in 1941 [2, p. 40] showed that if the order topology associated with \((X, R) \) is connected, then \((X, R) \) is dense and complete. The actual characterization (Theorem B) appears in Murty [8, p. 157]. Theorem C was verified in the proof of Eilenberg's Theorem 6.1 [2, p. 43], although not stated as a separate theorem.

Hausdorff in 1914 [6, p. 101] generalized Cantor's characterization [1, p. 511] of the order on the closed interval \([0, 1]\) to obtain the following characterization of the natural order on the reals:

Theorem D. An ordered set \((X, R) \) is order isomorphic to the reals
with the usual ordering iff \((X, R)\) is a complete linear order with no greatest or least element and \(X\) has a countable subset dense in \((X, R)\).

Theorem 2. A topological space \((X, \mathcal{T})\) is homeomorphic to the reals with the usual topology iff \((X, \mathcal{T})\) is a connected, separable, \(T_1\)-space, and \(\mathcal{T}\) is the least upper bound of two noncompact minimal \(T_0\)-topologies.

Proof. Let \((\mathbb{R}, \mathcal{U})\) be the reals with the usual topology and let \(\mathbb{R}\) be the usual order on \(\mathbb{R}\).

If \((X, \mathcal{T})\) is homeomorphic to \((\mathbb{R}, \mathcal{U})\), we may assume that \((X, \mathcal{T}) = (\mathbb{R}, \mathcal{U})\). Certainly, \((\mathbb{R}, \mathcal{U})\) is connected, separable, and \(T_1\). By Theorem 1, since \(\mathcal{U}\) is the order topology associated with \(\mathbb{R}\), \(\mathbb{R} = 3_1 \lor 3_2\) where \(3_1\) and \(3_2\) are minimal \(T_0\)-topologies. Furthermore, by the construction of \(3_1\) and \(3_2\) in the proof of Theorem 1, it is clear that neither \(3_1\) nor \(3_2\) is compact.

Conversely, suppose that \((X, \mathcal{T})\) is a connected, separable, \(T_1\)-space and that \(\mathcal{T}\) is the least upper bound of two noncompact minimal \(T_0\)-topologies, \(3_1\) and \(3_2\). Let \(S = R_3\) be the order associated with \(3_1\). Then \(S\) is linear and \(R_3 = S^{-1}\) by the proof of Theorem 1. Also by Theorem 1, \(S\) is the order topology on \(X\) associated with \(S\). By Theorem B, since \((X, \mathcal{T})\) is connected, \((X, S)\) is complete and dense. Then, since \((X, 3)\) is also separable, \((X, S)\) has a countable dense subset by Theorem C. If \((X, S)\) had a greatest element \(b\) and \(\alpha\) were any open cover of \(X\), then we would have \(b \in A_\alpha\) for some \(A_\alpha \in \mathcal{G}\). But then \((x, b) \in S\) for all \(x \in X \Rightarrow x \in A_\alpha\) for all \(x \in X\), by definition of \(S\). Thus \(A_b = X\) and \(\{A_\alpha\}\) would be a finite subcover, which is a contradiction. Therefore, \((X, S)\) has no greatest element. In like manner, \((X, S^{-1})\) has no greatest element. That is, \((X, S)\) has no greatest and no least element. In summary, \((X, S)\) is a complete linear order with no greatest or least element and \(X\) has a countable subset dense in \((X, S)\). Thus \((X, S)\) is order isomorphic to \((\mathbb{R}, R)\) by Theorem D. But since \((X, 3)\) and \((\mathbb{R}, \mathcal{U})\) are just the order topologies on \(X\) and \(\mathbb{R}\) associated with \(S\) and \(R\), respectively, it is clear that \((X, 3)\) is homeomorphic to \((\mathbb{R}, \mathcal{U})\).

References

UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302