A CHARACTERIZATION OF HEREDITARILY INDECOMPOSABLE CONTINUA

ALBERT L. CRAWFORD AND JOHN JOBE

Abstract. In this paper a characterization of a hereditarily indecomposable continuum is stated and proved. The motivation for this characterization is a theorem in a recent article by John Jobe.

In this paper a characterization of a hereditarily indecomposable continuum is stated and proved. The motivation for this characterization is a theorem proved by Jobe in [1]. This result is as follows:

Theorem 1. If M is the 2-finished sum of compact continua, M_1 and M_2, such that M_1 is hereditarily indecomposable and $M_1 \cap M_2 \neq \emptyset$, then there exists at least one point in $M_1 \cap M_2$ which is a limit point of both $(M_1 - M_2)$ and $(M_2 - M_1)$.

Definition. The set M is the 2-finished sum of continua M_1 and M_2 if $M = M_1 \cup M_2$ and $M_1 - M_2 \neq \emptyset$ and $M_2 - M_1 \neq \emptyset$.

We shall consider the space S to be a Moore space satisfying Axiom 0 and Axiom 1 of R. L. Moore.

First, we suspected that the hypothesis in Theorem 1 was too

Received by the editors February 19, 1970.

AMS 1969 subject classifications. Primary 5438; Secondary 5420.

Key words and phrases. Hereditarily indecomposable continuum, pseudo-arc, Brouwer continuum.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

205
strong. That is, we suspected that M_1 need only be an indecomposable continuum rather than hereditarily indecomposable. The following example in the plane emphasizes the importance of the hypothesis of Theorem 1 as stated. It shows the existence of a compact indecomposable continuum M_1 and a compact continuum M_2 satisfying the hypothesis of Theorem 1 with the exception that M_1 is not hereditarily indecomposable and the conclusion of Theorem 1 is not true.

Example 1. Let M_1 be the indecomposable continuum in the plane consisting of those semicircles lying above the x-axis centered at $(1/2, 0)$ with endpoints in the Cantor ternary set on the x-axis together with those semicircles lying below the x-axis with centers at $(1/(6 - 3^i), 0)$ and endpoints in the Cantor set. See [3].

Let M_2 be the continuum consisting of M_1 intersected with the closed upper-half plane together with the line segment from $(1/2, 1/6)$ to $(1/2, 1/2)$.

Then $M_1 - M_2$ lies below the x-axis and $M_2 - M_1$ lies above the line $y = 1/6$. Hence there exists no point that is a limit point of both $M_1 - M_2$ and $M_2 - M_1$.

The characterization of a hereditarily indecomposable continuum is in terms of the following defined Property Q. The definition of Property Q is motivated by the condition in Theorem 1.

Definition. Let S be a Moore space and M a continuum in S. Then M has Property Q in S if and only if for every compact continuum N in S such that $N \cap M \neq \emptyset$ and $N \cup M$ is the 2-finished sum of N and M, then there exists a point $p \in M \setminus N$ such that p is a limit point of both $M - N$ and $N - M$. A compact continuum M in S has Property Q hereditarily in S if and only if each subcontinuum of M has Property Q in S.

Theorem 2. Let T be a Moore space and M a compact continuum in T. Then M is hereditarily indecomposable if and only if for every function f and Moore space S such that f imbeds M in S, then $f(M)$ has Property Q hereditarily in S.

Proof. Assume the condition of the theorem. Let M be a compact continuum in a Moore space S and suppose that M is not hereditarily indecomposable. Then there exists a decomposable subcontinuum $M' = H \cup K \subseteq M$ where H and K are proper subcontinua of M' and $h \in H \setminus K$. Note that since S is a Moore space then $S \times S$ is also a Moore space. Define maps f and g from M to $S \times S$ as $f(m) = (m, h)$ and $g(m) = (h, m)$ for each $m \in M$. Then, since both f and g imbed M in $S \times S$, $f(M') = M' \times \{h\} = M_1$ and $g(M') = \{h\} \times M' = M_2$ are homeomorphic to M'. Let $H_1 = f(H)$ and $K_1 = f(K)$. Then $M_1 = H_1 \cup K_1 \subseteq f(M)$ is decomposable with $(h, h) \in H_1 - K_1$ since $h \in H \setminus K$.
Also the definitions of \(f \) and \(g \) imply that \(M_1 \cap M_2 = \{ (h, h) \} = H_1 \cap M_2 \) since \(H_1 \subset M' \). Thus \(H_1 \cup M_2 \) is a continuum in \(S \times S \). Furthermore, \((H_1 \cup M_2) - M_1 = M_2 - H_1 \), and hence

\[
(H_1 \cup M_2) - M_1 \subset M_2.
\]

Also \(M_1 - (H_1 \cup M_2) = M_1 - H_1 \subset K_1 \) and

\[
M_1 - (H_1 \cup M_2) \subset K_1.
\]

Since \(K_1 \) and \(M_2 \) are disjoint closed sets, no point is a limit point of both \(M_1 - (H_1 \cup M_2) \) and \((H_1 \cup M_2) - M_1 \). Hence, \(M_1 = f(M') \) does not have Property Q in \(S \times S \). Therefore, \(f(M) \) does not have Property Q hereditarily in \(S \times S \) which is a contradiction. Therefore, \(M \) is hereditarily indecomposable.

Conversely assume that \(M \) is a compact hereditarily indecomposable continuum in a Moore space \(T \). Let \(f \) be any function that imbeds \(M \) in a Moore space \(S \) and consider \(f(M) \). Since each subcontinuum of \(f(M) \) is itself hereditarily indecomposable, applying Theorem 1 we see that each subcontinuum of \(f(M) \) has Property Q in \(S \). Hence \(f(M) \) has Property Q hereditarily in \(S \) and the condition of the theorem follows.

We thought that in Theorem 2 the condition "for every function \(f \) and Moore space \(S \) such that \(f \) imbeds \(M \) in \(S \), \(f(M) \) has Property Q hereditarily in \(S \)" could be replaced by the condition "\(M \) has Property Q hereditarily in \(T \)." To see that this cannot be done the following example exhibits a Moore space \(T \) and a decomposable compact continuum \(M \) in \(T \) such that \(M \) has Property Q hereditarily in \(T \). Thus, this example complements the statement of Theorem 2.

Example 2. Let \(S_1 \) and \(S_2 \) be two pseudo-arcs in the plane constructed from \((-1, 0) \) to \((0, 0) \) and \((0, 0) \) to \((1, 0) \) respectively such that \(S_1 \cap S_2 = \{ (0, 0) \} \). Let \(p = (0, 0) \). Let \(T \) be the subspace of the plane such that \(T = S_1 \cup S_2 \). Let \(H \) and \(K \) be nondegenerate proper subcontinua of \(S_1 \) and \(S_2 \) respectively such that \(H \cap K = \{ p \} \). Then \(M = H \cup K \) is a decomposable compact continuum that has Property Q hereditarily in \(T \).

Suppose \(N \) is a subcontinuum of \(T \) such that \(N \cap M \neq \emptyset \) and \(N \cup M \) is the 2-finished sum of \(N \) and \(M \). Clearly \(p \in N \) and we may assume that \((N \cap S_1) \subset H \) and \(K \subset (N \cap S_2) \). Then \(M - N = H - (N \cap S_1) \) and \(N - M = (N \cap S_2) - K \). Because \(H \) and \(N \cap S_2 \) are pseudo-arcs, \(p \) is a limit point of both \(H - (N \cap S_1) \) and \((N \cap S_2) - K \). Since \(p \in M \cap N \) it has been verified that \(M \) has Property Q in \(T \).

Now if \(M' \) is a subcontinuum of \(M \), then either (a) \(M' \subset S_1 \) or (b) \(M' \subset S_2 \) or (c) \(M' - S_1 \neq \emptyset \) and \(M' - S_2 \neq \emptyset \). In cases (a) and (b), \(M' \)}
is hereditarily indecomposable and hence has Property Q in T. In case (c), M' has Property Q in T by the method used to show that M has Property Q in T. Therefore, M has Property Q hereditarily in T.

Since M is decomposable the example is verified.

There is a natural question suggested by Theorem 2 and Example 2—namely, is the property in question really a property of the embedding or a property of the containing space? More precisely, if M is a compact continuum, S is a Moore space, and f and g are two embeddings of M in S, does $f(M)$ have Property Q hereditarily in S if and only if $g(M)$ has Property Q hereditarily in S? Example 3 gives a negative answer to this question.

Example 3. Let T and M be as defined in Example 2. By Theorem 2 there exists a Moore space T_1 and an imbedding function f from M to T_1 such that $f(M)$ does not have Property Q hereditarily in T_1. The space T_1 can be picked such that $T \cap T_1 = \emptyset$. Let g be the imbedding from M to T such that $g(m) = m$, $m \in M$. Example 2 reveals that $g(M)$ has Property Q hereditarily in S.

Let $S = T \cup T_1$ and A be open in S if and only if A is the union of an open set in T and an open set in T_1. Note that S is a Moore space. It follows that f and g can be thought of as imbeddings of M into S and clearly $g(M)$ has Property Q hereditarily in S while $f(M)$ does not have Property Q hereditarily in S.

The authors have been able to find two other characterizations of hereditarily indecomposable continua. These two can be found in [2] and [4].

Bibliography

Oklahoma State University, Stillwater, Oklahoma 74074