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COMPLETE LATTICES AND THE GENERALIZED
CANTOR THEOREM

ROY O. DAVIES, ALLAN HAYES AND GEORGE ROUSSEAU

Abstract. Cantor's Theorem is generalized to a theorem on

partially ordered sets.

We shall show that every monotone mapping of a complete lattice

into itself has a point of left continuity and a point of right continu-

ity. From this result we derive an extension of a theorem of Gleason

and Dilworth [2] which in turn can be regarded as a generalization

of the classical theorem of Cantor stating that the cardinal of a set is

less than the cardinal of its power-set. As a corollary it follows that if

E and F are partially ordered sets then the cardinal power FE is not

a homomorphic image of E unless \F\ =1. This result answers a

question of F. W. Lawvere which provided the stimulus for our

investigation.

1. A continuity theorem for complete lattices. If E and F are

partially ordered sets then a mapping <p:E-*F is said to be isotone

if for all x, yEE

(1) x ^ y   implies   <b(x) ̂  <p(y) ;

the point aEE is called a point of left continuity resp. right continuity

for <p if

4>(a) = V <p(x)    resp. d>(a) = A d>(x).

A mapping4>:E—>Fis said to be antitone if for all x, yEE

(2) iáj    implies    <p(x) 5: <b(y);

the point a EE is called a point of left continuity resp. right continuity

for <p if

d>(a) = A <P(x)    resp. d>(a) = V <¡>(x).
x<a x>a

(In the familiar case of monotone functions on the real line, these

definitions of left and right continuity are equivalent to the usual

ones.) If the inequalities in (1) and (2) are replaced by strict in-
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equalities then we obtain the notions of strictly isotone and strictly

antitone mapping. A mapping is called monotone if it is isotone or

an ti tone.

Theorem 1. Every monotone mapping of a complete lattice into it-

self has a point of left continuity and a point of right continuity.

Proof. Let C be a complete lattice and let 4>:C~^>C be a monotone

mapping. We prove the existence of a point of left continuity; the

existence of a point of right continuity may be established by a dual

argument.

Suppose first that<b is isotone, and leta = Vx<mx) <p(x). Then

(3) a =     V    <p(x) ̂  V 4>(x) ̂  0(a)-
*<* (i ) x<a

If a<<f>(a) then <p(a) ¿a, a contradiction. Hence equality holds

throughout in (3), and consequently o is a point of left continuity

for </>.

Suppose now that d> is antitone. We may suppose that d> is strictly

antitone; for otherwise there exist elements a and b such that a<b

and <p(a) =<p(b), in which case <j>(b) =</>(a) ̂ Ax<b<f>(x) z^<f>(b), so that

b is a point of left continuity for <j>. Since <j>2 is isotone, there exists,

by what has already been proved, an element a such that

<b(<b(a)) = A <¡>(4>(x)) =     V    4>(y) ̂  4>(<b(a)) ;
x>a V<* (o )

hence 4>(a) is a point of left continuity for <j>.

Corollary. // / is an arbitrary mapping of a complete lattice into

itself then there exist points a and b such that

f(a) ú  y f(x)    and   f(b) ^ V f(x).

Proof. Apply Theorem 1 to the monotone mappings

4>i(x) = V/(w)    and   <b2(x) = V/(«).
U£X u>x

We observe that in the case of an isotone mapping <p, the proof of

Theorem 1 establishes the existence of a fixed point at which <j> is

left continuous. Thus we obtain the fixed point theorem of Tarski

[4].
The Tarski fixed point theorem characterizes complete lattices

(cf. Davis [l]), but Theorem 1 does not; for example, every mono-

tone mapping of the incomplete lattice 1 + (w* +w) -2 + 1 has a point
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of left continuity and a point of right continuity. Again, the fixed

points of an isotone mapping form a complete lattice (cf. Tarski

[4]), whereas the points of left continuity need not; for example,

consider the function sgn(x) on the real interval — 1 ̂ x á 1.

2. An extension of a theorem of Gleason and Dilworth. A left

ideal in a partially ordered set E is a subset L such that if x^yand

y EL then xEL; a right ideal is a subset R such that if x^yand

y ER then xER-
The set £(E) of left ideals and the set (R(-E) of right ideals are

easily seen to be complete lattices when partially ordered by inclu-

sion ; these lattices are in fact anti-isomorphic.

Henceforth we shall refer to isotone mappings as homomorphisms.

Gleason and Dilworth [2 ] prove a theorem which is easily seen to

be equivalent to the following statement:

(X) If E is a partially ordered set, then there is no injective homo-

morphism from £(E) to E and no surjective homomorphism from E to

6(E).
From this result we may derive the corresponding statement for

right ideals:

(p) If E is a partially ordered set, then there is no injective homo-

morphism from (R(E) to E and no surjective homomorphism from E to

61(E).
Indeed, if there were an injective homomorphism 4>:(R(E)—>E

then there would be an injective homomorphism \¡/:£(E)—*E, de-

fined by

*(L) = 4>(CL<t,(CL)),

where CX=E — X and Lx= {uEE'.u^x} ; similarly, if there were a

surjective homomorphism <j>:E—>0T(£) then there would be a sur-

jective homomorphism d/:E—y£(E), defined by

*(*) = C{J4>[C<t>(x)],

where <p[X]= {<p(x):xEX} and \}% = UxexX. (The mapping \p is

surjective because, given L, we can find x such that ip(x) =L by

choosing z so that <p(z) = CL and x so that <j>(x) = CLz.) It is interest-

ing to note that it does not seem possible to derive (X) from (p) in

this manner.

Using the result of §1 we now prove a theorem which includes both

(X) and (p), and which seems to be more general.

If E and F are partially ordered sets then a mapping <p:E—>F'
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will be called a weak monomorphism if the following condition holds

for all x, yEE: if x^y and <p(x) ̂4>(y) then x = y.

It is convenient to admit mappings which are not necessarily

single-valued, and in this case <j)(x) denotes ambiguously any image

of x under <p. The next theorem will be stated with this understanding.

If we assume the axiom of choice it is not necessary to consider many-

valued mappings ; we discuss this question after the proof of Theorem

2.
The class of weak monomorphisms contains all injective homo-

morphisms and the inverses of surjective homomorphisms. It is there-

fore clear that the following result includes (X) and (p) :

Theorem 2. // E is a partially ordered set, then there is no weak

monomorphism from £(E) to E or from <R(E) to E.

Proof. Given any mapping <p:£(E)—>E, define a mapping/ of the

complete lattice £(E) into itself by letting/(L) be the set of all xEE

such that x^d>(L) for some value of <p(L). By the Corollary to The-

orem 1, there exists L such that

f(L) Ç   U  f(M).
MaL

Choosing any value of <t>(L) we have <t>(L) Ef(L) ; hence there exists

M CL such that <j>(L) Ef(M) ; it follows that for some value of <j>(M)

we have (¡>(L)^<p(M); hence we have MQL and <p(M)^<f>(L), and

thus <f> is not a weak monomorphism. By a similar argument there can

be no weak monomorphism from (ft(-E) to E.

If we assume the axiom of choice then Theorem 2 can be deduced

from the special case referring to single-valued mappings; indeed

given a many-valued weak monomorphism d>:£(E)—*E we can ob-

tain a single-valued weak monomorphism <t>0'- £(E)—*E by choosing

as the value of <t>o(L) one particular value of 4>(L). Hence in particular

(p), as well (X), can be deduced from this restricted form of Theorem 2

if we have recourse to the axiom of choice.

We note the following consequence of Theorem 2 which does not

seem to be derivable from the theorem of Gleason and Dilworth, or

by simple considerations of cardinality :

(*) There is no function <b from the power-set of a sel E into E such

that <j> is one-one on every chain.

That is, there is no function d>:P(E)—>E such that for all X,

YEP(E)

(4) X C Y   implies   <p(X) ¿¿ ¿(Y).
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This  proposition  can  be derived  from  the  following  theorem  of

Sierpiñski [3]:

For every set E there exists a chain T of subsets of E with cardinality

|r| >|£|.
However the proof of this theorem is less elementary; in particular,

some form of the axiom of choice must be used, since the theorem

implies that every set can be ordered.

A direct proof for (*) may be given as follows: if <f>:P(E)—>E

satisfied (4), then the sequence of subsets defined for all ordinals

a by the transfinite recursion

Xa= ¡4>(X():t < a]

would be strictly increasing, which is impossible.

3. Solution of a problem of Lawvere. If E and F are partially

ordered sets then the cardinal power FE is the set of all homomor-

phisms from E to F, with the partial order defined by setting / â g

whenever/(x) ^g(x) for all xG-E.

The ra-element chain will be denoted by ». It is clear that 2E is

isomorphic to (ñ(E). A partially ordered set E is said to be discretely

ordered if, for all x, yEE

x £í y   iff    x = y.

Theorem 3. If E and F are partially ordered sets and F is not dis-

cretely ordered then there is no weak monomorphism from FE to E. In

particular, there is no injective homomorphism from FE to E and no

surjective homomorphism from E to FE.

Proof. Suppose there exists a weak monomorphism <p:FE—>E.

Since F is not discretely ordered it contains a subset isomorphic to 2.

Hence FE contains a subset isomorphic to 2E, or what is the same, to

(R(£). By restricting <p we obtain a weak monomorphism from (R(E)

to E, contrary to Theorem 2.

We now consider the case where F is discretely ordered. Let D be

the set of connected components of E (that is, the equivalence

classes under the equivalence relation generated by ^), with the

discrete partial order. It is clear that FE is isomorphic to the dis-

cretely ordered set FD. Any surjective homomorphism from E to FD

induces a surjective homomorphism from D to FD; hence bv Cantor's

Theorem there exists a surjective homomorphism from E to FE just

when F=\. There exists an injective homomorphism from FD to E

if and only if | FD\ ^ Ii?! ; hence there exists an injective homomor-

phism from FE to E just when \ FD\ ^ | E\.
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As a result of the above discussion we have the following proposi-

tion :

// E and F are partially ordered sets, then there is no surjective homo-

morphism <p:E—>FE unless F=l.

As mentioned in the introduction this answers a question posed

by Lawvere. We observe that the result can be derived directly from

(p) without the use of the more general Theorem 2; for if F is not

discretely ordered then there exists a surjective homomorphism from

FB to 2E.
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