ELEMENTARY PROOF OF A THEOREM OF HELSON

RAOUF DOSS

Abstract. An elementary proof is given of a theorem of Helson, to the effect that in a locally compact abelian group, the transform of a measure concentrated on a Helson set does not vanish at infinity.

G is a locally compact abelian group whose dual is denoted Γ. A compact set H in G is called a Helson set if to every $f \in C(H)$ there corresponds an $f \in L^1(\Gamma)$ such that

$$F(x) = \int_{\Gamma} (\overline{\alpha}, \gamma) f(\gamma) d\gamma, \quad x \in H.$$

A simple characterization of Helson sets is the following (see e.g. [3, p. 115]): A compact set H is a Helson set if and only if there exists a constant B such that if $\sigma \in M(H)$, i.e. if σ is a measure concentrated on H, then

(1) $||\sigma|| \leq B||\delta||_{\infty}$.

Helson's theorem (see a proof in [2] for $G = \mathbb{R}$, and a more difficult proof in [3, p. 119], for the general case) is the following:

Suppose H is a Helson set, $\sigma \in M(H)$ and $\sigma \neq 0$. Then $\delta \in C_0(\Gamma)$, that is δ does vanish at infinity.

An interesting consequence of this theorem is that every Helson set has Haar measure zero.

We shall use the following well known facts:

If $\delta \in C_0(\Gamma)$ then σ is a continuous measure.

If $\delta \in C_0(\Gamma)$ and if g is any bounded Borel function, then $\langle g\delta \rangle^* \in C_0(\Gamma)$. In particular if $\sigma \in M(H)$, $\delta \in C_0(\Gamma)$, then multiplying σ by a Borel function of modulus 1 we get a real measure on H whose transform still vanishes at infinity.

If σ is a real continuous measure on a set S, $\sigma(S) \neq 0$, and if N is any positive integer, then we can partition S into N disjoint sets S_i such that $\sigma(S_i) = N^{-1}\sigma(S)$ (see e.g. [1, p. 63, Exercise 9]).
We shall show in an elementary way, that for a certain positive integer N, depending on the Helson set H:

If $\sigma \in M(H)$, σ real, $\sigma \neq 0$, $\delta \in C_0(\Gamma)$, then $\exists \mu \in M(H)$:

$$
\mu \text{ real, } \|\mu\| = \|\sigma\|, \quad \mu \in C_0(\Gamma), \quad \|\mu\|_\infty \leq (1 - 3/N)\|\delta\|_\infty.
$$

(2)

This will contradict (1), since by repeated application it yields a sequence μ_n in $M(H)$, with $\|\mu_n\| = \|\sigma\|, \|\mu\|_\infty \to 0$ and Helson's theorem will be proved.

Proof of (2). Choose the positive integer N such that $2N^{-1}B \leq (1 - 2N^{-1})$. Let $\epsilon > 0$ be arbitrary. Let K be a compact set in Γ such that $|\delta(\gamma)| < \epsilon$ for $\gamma \in K$. We can decompose H into a union of disjoint sets E_i, $i = 1, \ldots, n$, such that, for each i, (x, γ) varies very little for $x \in E_i, \gamma \in K$. In particular, for $x_i \in E_i$,

$$
\left| \sum_i \sigma(E_i)(x_i, \gamma) - \delta(\gamma) \right| < \epsilon \quad \text{for } \gamma \in K.
$$

(3)

Each E_i contains a set E'_i such that $\sigma(E'_i) = N^{-1}\sigma(E_i)$ and we can choose E'_i such that

$$
|\sigma|(E'_i) \leq N^{-1}|\sigma|(E_i).
$$

(4)

Let χ' be the characteristic function of $H' = \bigcup E'_i$ and put $\sigma' = \chi'\sigma$. By our choice of the E_i we may suppose that, for $x_i \in E_i$,

$$
\left| \sum_i \sigma'(E'_i)(x_i, \gamma) - \delta'\gamma \right| < \epsilon \quad \text{for } \gamma \in K.
$$

(3')

Put $\mu = (1 - 2\chi')\sigma$. Since $|1 - 2\chi'| = 1$ we have $\|\mu\| = \|\sigma\|$. Also $\mu \in C_0(\Gamma)$.

Now for $\gamma \in K$, we have, by (3) and (3')

$$
|\mu(\gamma)| = |\delta(\gamma) - 2\delta'(\gamma)| \leq 3\epsilon + \left(1 - \frac{2}{N}\right)\|\delta(\gamma)(x_i, \gamma)\|_\infty
$$

\leq 3\epsilon + \left(1 - \frac{2}{N}\right)(\|\delta\| + \epsilon) \leq \left(1 - \frac{3}{N}\right)\|\delta\|_\infty \quad (\epsilon \text{ small})
$$

while for $\gamma \in K$, by (4),

$$
|\mu(\gamma)| < \epsilon + 2\|\sigma'\| \leq \epsilon + \frac{2}{N}\|\sigma\| \leq \epsilon + \frac{2}{N}B\|\delta\|_\infty
$$

\leq \epsilon + \left(1 - \frac{2}{N}\right)\|\delta\|_\infty \leq \left(1 - \frac{3}{N}\right)\|\delta\|_\infty.
$$

The proof of (2) is now complete.
Bibliography

State University of New York, Stony Brook, New York 11790