SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

ON THE HYPERSPACE OF SUBCONTINUA OF AN ARC-LIKE CONTINUUM

GEORGE W. HENDERSON

Abstract. It is shown that the hyperspace of each arc-like continuum can be embedded in E^3.

W. R. R. Transue [1] in a beautiful note gave a positive answer to A. Connor's [2, p. 152] question "Can the hyperspace of subcontinua of the pseudoarc (with the Hausdorff metric) be embedded in $E^3". This note extends this result to arc-like continua, i.e. inverse limits on arcs originally called snake-like continua by R. H. Bing [3].

Here $\{W, f_i\}$ will denote the inverse limit system with indexing set the nonnegative integers and with each factor space W. The associated inverse limit space will be denoted by $\lim \{W, f_i\}$. See [4, p. 87] for a discussion of inverse limits. The hyperspace of continua of a space X, denoted by $C(X)$, is studied in [5]. The closed interval $[0, 1]$ will be called I.

Theorem. The hyperspace of continua of the inverse limit space $X = \lim \{I, f_i\}$ embeds in E^3.

Proof. There is no loss to assume that none of the maps f_i is constant on an open set. Since a continuum in I is either a closed interval or a point, $C(I)$ will be identified with

$$D = \{(x, y, z) \in E^3 | 0 \leq x \leq y \leq 1, z = 0\}.$$

Take $F_i: D \to D$ by

$$F_i(x, y, 0) = (\min f_i(t), \max f_i(t), 0), \quad t \in [x, y].$$

Now F_i is the natural map from $C(I)$ to $C(I)$ induced by f_i.

J. Segal [6] proved that the hyperspace of continua of the inverse limit space X is homeomorphic to $\lim \{C(I), F_i\}$. The proof of the theorem will be completed by embedding $\lim \{D, F_i\}$ in E^3. Now if each of the maps F_i could be approximated by embeddings in E^3 in the

Received by the editors December 8, 1969.

AMS 1970 subject classifications. Primary 54B20, 54C25, 54F50.

Key words and phrases. Arc-like continua, hyperspace of continua, imbedding.

Copyright © 1971, American Mathematical Society
sense of McCord [7, Theorem 2] then \(\lim \{ D, F_i \} \) embeds in \(E^3 \) by McCord's Theorem. To construct these approximations one must prove the following:

Lemma. If \(\epsilon > 0 \), then there is a homeomorphism \(h_i \) of \(E^3 \) onto \(E^3 \) such that \(\| h_i \| D, F_i \| < \epsilon \).

Proof. For each \((x, y, 0) \in D \) take

\[
G_i(x, y, 0) = F_i(x, y, 0) + \left(0, 0, \frac{\epsilon}{4} \frac{x + y}{2} \right) \quad \text{(vector addition)}.
\]

As \(f_i \) is not locally constant, a check will show that each point inverse of \(G_i \) is a point or a closed interval which does not separate \(D \). Thus \(G_i(D) \) is a topological disk and consequently there is a homeomorphism \(H_i \) of \(D \) onto \(G_i(D) \) such that \(\| H_i, G_i \| < \epsilon/4 \) by Radó [8, Theorem 2.17]. Next \(G_i(D) \) is tamed by an approximation theorem of R. H. Bing [9] which constructs a homeomorphism \(J_i \) of \(D \) into \(E^3 \), \(\| J_i, H_i \| < \epsilon/4 \) and with \(J_i(D) \) a polyhedron. So there is a homeomorphism \(h_i \) of \(E^3 \) onto \(E^3 \) with \(h_i \| D = J_i \) since \(J_i(D) \) is tame.

Remark. With more care one can construct this embedding so that the intersection of the embedded \(C(X) \) and the plane \(x = y \) is exactly the set of degenerate subcontinua of \(X \).

References

University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201