CONTINUUM NEIGHBORHOODS AND FILTER BASES

DAVID P. BELLAMY\(^1\) AND HARVEY S. DAVIS\(^2\)

Abstract. In this paper we prove that if \(\Gamma \) is a filterbase of closed subsets of a compact Hausdorff space then \(T(\bigcap \Gamma) = \bigcap \{ T(G) \mid G \in \Gamma \} \), where \(T(A) \) denotes the set of those points for which every neighborhood which is a continuum intersects \(A \) nonvoidly.

Introduction. In this paper \(S \) denotes a compact Hausdorff space. If \(p \in S \) and \(W \subseteq S \), then \(W \) is a continuum neighborhood of \(p \) iff \(W \) is a subcontinuum of \(S \) and \(p \in \text{Int}(W) \). If \(A \subseteq S \), \(T(A) \) denotes the complement of the set of those points \(p \) of \(S \) for which there exists a continuum neighborhood which is disjoint from \(A \) \([1]\). \(S \) is said to be \(T\)-additive iff for every collection \(A \) of closed subsets of \(S \) whose union is closed, \(T(\bigcup A) = \bigcup \{ T(L) \mid L \in A \} \) \([2]\). The following three theorems are established.

Theorem A. Let \(\Gamma \) be a filterbase of closed subsets of \(S \). Then \(T(\bigcap \Gamma) = \bigcap \{ T(G) \mid G \in \Gamma \} \).

Theorem B. \(S \) is \(T\)-additive iff for each pair \(A, B \) of closed subsets of \(S \), \(T(A \cup B) = T(A) \cup T(B) \).

Theorem C. Let \(A \) be a closed subset of \(S \). If \(K \) is a component of \(T(A) \) then \(T(A \cap K) = K \cup T(\emptyset) \).

Theorem A is used in establishing Theorems B and C. Theorem C is used to obtain the known result that if \(S \) and \(W \) are continua and \(W \subseteq S \), then \(T(W) \) is a continuum \([1]\).

Proof of Theorem A. It is immediate from the definition that whenever \(A \subseteq B \), \(T(A) \subseteq T(B) \) and thus \(T(\bigcap \Gamma) \subseteq \bigcap \{ T(G) \mid G \in \Gamma \} \).

Suppose \(p \in T(\bigcap \Gamma) \). There exists \(W \), a subcontinuum of \(S \), such that \(p \in \text{Int}(W) \) and \(W \cap (\bigcap \Gamma) = \emptyset \). Since \(W \) is compact, there exists a finite collection \(G_1, \ldots, G_n \) of elements of \(\Gamma \) whose intersection is disjoint from \(W \). By hypothesis there exists \(G \), an element of \(\Gamma \), which is contained in \(G_1 \cap \cdots \cap G_n \). Since \(G \) is disjoint from \(W \), \(p \notin T(G) \). Hence \(p \notin \bigcap \{ T(G) \mid G \in \Gamma \} \) and thus

Received by the editors January 6, 1970.

AMS 1969 subject classifications. Primary 5455; Secondary 5465.

Key words and phrases. Compact Hausdorff space, continuum neighborhood, \(T(A) \), \(T\)-additive, filterbase, component.

\(^1\) Research supported in part by the University of Delaware Research Foundation.

\(^2\) Research supported in part by the National Science Foundation NSF 71-1550.

Copyright © 1971, American Mathematical Society

371
Proof of Theorem B. The necessity of the condition is clear. Let \(\Lambda \) be a collection of closed subsets of \(S \) whose union is closed in \(S \). Since \(T(\cup \Lambda) \supseteq \bigcup \{ T(L) \mid L \in \Lambda \} \), it need only be shown that \(T(\cup \Lambda) \subseteq \bigcup \{ T(L) \mid L \in \Lambda \} \) in order to establish the sufficiency of the condition.

Suppose \(x \in \bigcup \{ T(L) \mid L \in \Lambda \} \). Then for each \(L \in \Lambda \) let \(F(L) \) be the collection of closed subsets of \(S \) such that \(L \subseteq \text{Int}(A) \). If \(L = \emptyset \), clearly \(T(L) = \bigcap \{ T(A) \mid A \in F(L) \} \). If \(L \neq \emptyset \), then \(F(L) \) is a filterbase of closed subsets of \(S \) and, since \(\bigcap F(L) = L \), \(T(L) = \bigcap \{ T(A) \mid A \in F(L) \} \) by Theorem A.

Hence, for each \(L \), \(x \in \bigcap \{ T(A) \mid A \in F(L) \} \) and thus there exists, for each \(L \), \(f(L) \in F(L) \), such that \(x \in \text{Int}(f(L)) \). \(\{ \text{Int}(f(L)) \mid L \in \Lambda \} \) is an open covering of \(\cup \Lambda \). Since \(\cup \Lambda \) is compact there exists a finite subcollection \(\Gamma \) of \(\{ \text{Int}(f(L)) \mid L \in \Lambda \} \) such that \(\cup \Lambda \subseteq \bigcup \Gamma \). Since, by hypothesis and induction \(T(\cup \Gamma) = \bigcup \{ T(G) \mid G \in \Gamma \} \), \(T(\cup \Lambda) \subseteq \bigcup \{ T(G) \mid G \in \Gamma \} \). Since for all \(G \in \Gamma \), \(x \in \text{Int}(G) \), it follows that \(x \in T(\cup \Lambda) \). Thus \(T(\cup \Lambda) \subseteq \bigcup \{ T(L) \mid L \in \Lambda \} \).

Proof of Theorem C. Two technical lemmas are established. Theorem C follows easily from these two lemmas and Theorem A.

Lemma 1. Let \(A \) be a subset of \(S \). \(p \in S - T(A) \) iff there is a subcontinuum \(W \) and an open subset \(Q \) of \(S \) such that \(p \in \text{Int}(W) \cap Q \), \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \).

Proof. Let \(p \in S - T(A) \). There is a subcontinuum \(W \) of \(S \) such that \(p \in \text{Int}(W) \) and \(W \cap A = \emptyset \). Since \(S \) is regular there is an open subset \(Q \) of \(S \) such that \(p \in Q \) and \(\text{Cl}(Q) \subseteq \text{Int}(W) \). It is clear that \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \).

Now suppose that there is a subcontinuum \(W \) and an open subset \(Q \) of \(S \) such that \(p \in \text{Int}(W) \cap Q \), \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \). Since \(\text{Fr}(Q) \) is compact and disjoint from \(T(A) \), there exists a finite collection \(\{ W_i \} \) of subcontinua of \(S \), all disjoint from \(A \), such that \(\bigcup \{ \text{Int}(W_i) \} \supseteq \text{Fr}(Q) \). Since \(W \subseteq Q \) it is immediate that \(p \in S - T(A) \), assume \(W \cap S - Q \neq \emptyset \). The closure of each component of \(W \cap Q \) must intersect at least one of the \(W_i \)'s, since \(\text{Fr}(Q) \subseteq \bigcup \{ W_i \} \). Hence \((W \cap Q) \cup (\bigcup \{ W_i \}) = H \) has only a finite number of components. Since \(p \in \text{Int}(W) \cap Q \), there is a component \(K \) of \(H \) such that \(p \in \text{Int}(K) \) and, of course, \(K \cap A \cap H \cap A = \emptyset \). Thus \(p \in S - T(A) \).

Lemma 2. Let \(A \) be a subset of \(S \). If \(T(A) = M \cup N \) separate then \(T(A \cap M) = M \cup T(\emptyset) \).
Proof. Suppose \(p \in T(A \cap M) - (M \cup T(\emptyset)) \). Since \(p \in T(\emptyset) \), there is a subcontinuum \(W \) of \(S \) such that \(p \in \text{Int}(W) \). Since \(S \) is normal, there is an open subset \(Q \) of \(S \) containing \(N \) whose closure is disjoint from \(M \). It is clear that \(p \in \text{Int}(W) \cap Q \), \(\text{Fr}(Q) \cap T(A \cap M) \subset \text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap (A \cap M) \cap Q \subset Q \cap M = \emptyset \). Hence, by Lemma 1, \(p \in T(A \cap M) \), thus contradicting the supposition.

Now suppose that \(p \in (M \cup T(\emptyset)) - T(A \cap M) \). Since \(p \in T(A \cap M) \) and \(\emptyset \subset A \cap M, p \in T(\emptyset) \). Hence \(p \in M \). There is an open subset \(Q \) of \(S \) containing \(M \) whose closure is disjoint from \(N \). Since \(p \in T(A \cap M) \), there is a subcontinuum \(W \) of \(S \) such that \(p \in \text{Int}(W) \) and \(W \cap (A \cap M) = \emptyset \). It is clear that \(p \in \text{Int}(W) \cap Q \) and \(\text{Fr}(Q) \cap T(A) = \emptyset \). Since \(Q \cap N = \emptyset, W \cap A \cap Q = W \cap (A \cap M) = \emptyset \). Hence, by Lemma 1, \(p \in T(A) \) so \(p \in M \), thus contradicting the supposition.

Now in order to establish Theorem C, let \(A \) be a closed subset of \(S \) and \(K \) be a component of \(T(A) \). Let \(\{K_\alpha\} \) be the collection of all subsets of \(T(A) \) such that \(K \subset K_\alpha \) and \(K_\alpha \) is both open and closed in \(T(A) \). Note that the collection \(\{A \cap K_\alpha\} \) can only fail to be a filterbase if for some \(K_\alpha, A \cap K_\alpha = \emptyset \). In this case the conclusion of Theorem A is trivial. Lemma 2, of course, remains true even if \(A \cap M = \emptyset \) so, for each \(K_\alpha, T(A \cap K_\alpha) = K_\alpha \cup T(\emptyset) \). That this can occur is seen by letting \(S \) be the Cantor set, \(A \) be the void set and \(K_\alpha \) be \(S \).

The following sequence of equalities establish the theorem:

\[
T(A \cap K) = T(\bigcap \{A \cap K_\alpha\}) = \bigcap \{T(A \cap K_\alpha)\} = \bigcap \{K_\alpha \cup T(\emptyset)\} = \bigcap \{K_\alpha\} \cup T(\emptyset) = K \cup T(\emptyset).
\]

Theorem C is not true if the requirement that \(A \) be closed is dropped. Let \(S \) be the unit interval and let \(A \) be the sequence \(\{1/n\} \). Then \(T(A) = \{0\} \cup A \). Let \(K = \{0\} \). Then \(T(A \cap K) = T(\emptyset) \) which is void since \(S \) is a continuum. But \(K \cup T(\emptyset) \) is not void.

Corollary 1. Let \(S \) be a continuum and \(W \) be a subcontinuum of \(S \). \(T(W) \) is a subcontinuum of \(S \).

Proof. Suppose \(T(W) = A \cup B \) separate. By Theorem C, \(T(W \cap A) = A \) and \(T(W \cap B) = B \) since \(T(\emptyset) = \emptyset \) when \(S \) is a continuum. \(W \cap A \neq \emptyset \) since \(T(W \cap A) \neq \emptyset \) and, likewise \(W \cap B \neq \emptyset \). Hence \(W = (W \cap A) \cup (W \cap B) \) separate, contradicting the hypothesis and thus establishing the proposition.
Corollary 2. Let S be a continuum and let W_1 and W_2 be subcontinua of S. If $T(W_1 \cup W_2) \neq T(W_1) \cup T(W_2)$ then $T(W_1 \cup W_2)$ is a continuum.

Proof. Suppose $T(W_1 \cup W_2) = A \cup B$ separate. By Lemma 2, $T((W_1 \cup W_2) \cap A) = A$ and $T((W_1 \cup W_2) \cap B) = B$. Suppose $W_1 \subset A$. If $W_2 \subset A$ then $A = T((W_1 \cup W_2) \cap A) = T(W_1 \cup W_2)$, thus contradicting the supposition. Hence $W_2 \subset B$. But then $T(W_1) = A$ and $T(W_2) = B$. Thus $T(W_1 \cup W_2) = T(W_1) \cup T(W_2)$. Corollaries 1 and 2 are special cases of Theorem 8 of [1].

Corollary 3. Let S be a continuum and let A and B be closed subsets of S. If K is a component of $T(A \cup B)$ which lies in neither $T(A)$ nor $T(B)$, then, $K \cap A \neq \emptyset \neq K \cap B$.

Proof. Since S is a continuum, $T(\emptyset) = \emptyset$ and, by Theorem C, $T((A \cup B) \cap K) = K$. Since K lies in neither $T(A)$ nor $T(B)$, $(A \cup B) \cap K$ meets both A and B. Thus K meets both A and B.

Corollary 4. Let S be a continuum and let A and B be closed subsets of S. If $T(A \cup B) \neq T(A) \cup T(B)$ then there exists a subcontinuum $K \subset T(A \cup B)$ such that $K \cap A \neq \emptyset \neq K \cap B$.

Proof. Let K be the component of some point in $T(A \cup B) - (T(A) \cup T(B))$ and apply Corollary 3.

Bibliography

Michigan State University, East Lansing, Michigan 48823

University of Delaware, Newark, Delaware 19711