ALMOST\textdaggerPERIODICITY OF THE INVERSE OF A FUNDAMENTAL MATRIX1

A. M. FINK

Abstract. We show that if X is the fundamental solution to $X' = AX + XB$ with X, A, and B almost periodic $n \times n$ matrices, then X^{-1} is almost periodic.

We prove the

Theorem. If X is the fundamental solution to $X' = AX + XB$ with X, A, and B almost periodic $n \times n$ matrices, then X^{-1} is almost periodic.

This is apparently new even if A or B is the zero matrix. The equation is of extreme importance in the theory of stability since the transformation $Y = XZ$ maps the equation $Y' = AY$ into $Z' = -BZ$.

It is useful to know that X^{-1} is bounded if X is. In particular, when X is almost periodic, then our theorem shows that X^{-1} is bounded. See Lillo [4] for applications. The fundamental solution is the solution such that $X(0) = I$.

The general result may be reduced to the scalar case in the following way. Since $X^{-1} = (\det X)^{-1} (\text{adjoint} X)^T$ it is easily seen that X^{-1} is almost periodic if and only if $(\det X)^{-1}$ is almost periodic. Now it is well known that if $Y' = AY$, $Y(0) = I$ then $y = \det(Y)$ satisfies $y' = (\text{trace} A)y$, $y(0) = 1$. Similarly if $Z' = ZB$, $Z(0) = I$, then $z = \det(Z)$ satisfies $z' = (\text{trace} B)z$, $z(0) = 1$. Now it is easy to check that $X = YZ$ satisfies $X' = AX + XB$, $X(0) = I$ and that $x = \det(X)$ satisfies $x' = [\text{trace}(A + B)]x$, $x(0) = 1$. Consequently the theorem follows from the following lemma whose proof is contained in Bochner [1].

Lemma. Let y be a nontrivial scalar almost periodic solution to the almost periodic equation $y' = p(t)y$. Then $\inf |y| > 0$ and y^{-1} is almost periodic.

If the result does not hold, let $\lim_{n} y(t_{n}) = 0$. By the almost periodicity of p and y we can find a subsequence s_{n} of t_{n} such that

$$\lim_{n} y(t + s_{n}) = z(t) \quad \text{and} \quad \lim_{n} p(t + s_{n}) = q(t)$$

Received by the editors May 22, 1970.

AMS 1969 subject classifications. Primary 3445; Secondary 3451.

Key words and phrases. Fundamental solution, almost periodic.

1 This research was supported in part by the National Science Foundation under GP 11623.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
exist uniformly on the real line. Then \(z'=qz \) and \(z(0)=0 \). Hence \(z(t)=0 \) for all \(t \) and \(y(t)=\lim_n z(t-s_n)=0 \) for all \(t \). So it must be that \(\inf|y|>0 \). Hence \(y^{-1} \) is almost periodic.

It follows that \(\int_0^t \text{trace}(A+B) \) must be almost periodic if the fundamental solution of \(X'=AX+XB \) is to be almost periodic in the real case. If \(A \) and \(B \) are complex, then

\[
\int_0^t \text{trace}(A+B) = i\alpha t + \text{an almost periodic function, \ with \ } a \text{ real.}
\]

This necessary condition, which seems to be new, has appeared as one of several sufficient conditions for the existence of an almost periodic vector solution, see e.g. [2]. See also Langenhop [3] for a related result if \(B \) is constant and \(X \) and \(X^{-1} \) are only required to be continuous and bounded.

Bibliography

Iowa State University, Ames, Iowa 50010

University of Colorado, Boulder, Colorado 80302