$M_0(G)$ IS NOT A PRIME L-IDEAL OF MEASURES

COLIN C. GRAHAM

Abstract. A technique of Hewitt and Zuckerman is used to show that if G is any locally compact abelian group with dual Γ, then there exist nonzero positive regular Borel measures μ, ν on G, each one of which is mutually singular with each measure ω whose Fourier-Stieltjes transform vanishes at infinity on Γ and such that the Fourier-Stieltjes transform of the convolution $\mu \ast \nu$ vanishes at infinity on Γ.

0. Introduction. $M(G)$ is the Banach algebra of regular Borel measures on a nondiscrete LCA group G, and $M_0(G)$ is the ideal of those measures whose Fourier-Stieltjes transforms vanish at infinity on the dual Γ of G.

An L-subspace (band) in $M(G)$ is a closed subspace I such that if $\mu \in I$ and $\nu \in M(G)$ is absolutely continuous with respect to μ then $\nu \in I$. The set $I^\perp = \{ \mu : \mu$ is singular with each $\nu \in I \}$ is called the complement of I. We write $\mu \perp \nu$ if μ and ν are mutually singular. Each L-subspace gives a direct sum decomposition $M(G) = I \oplus I^\perp$.

An L-ideal I in $M(G)$ is an ideal which is an L-subspace. An L-ideal I is prime if I^\perp is a subalgebra. Lemma 0.1 shows $M_0(G)$ is an L-ideal.

We prove the following:

Theorem. Let G be a nondiscrete LCA group. Then $M_0(G)^\perp$ contains positive nonzero measures μ, ν such that $\mu \ast \nu \in M_0(G)$.

Corollary. $M_0(G)$ is not a prime L-ideal.

Comments. Prime L-ideals have been constructed by Raïkov (see [1]), Simon [5], Varopoulos [8], and Šreïder [6]. Taylor [7] has characterized prime L-ideals in terms of generalized characters. Hewitt and Zuckerman [3] have shown that $L^1(G)$ is not a prime L-ideal.

We use the notation of [4]. $\nu \ll \mu$ means ν is absolutely continuous with respect to μ.

Lemma 0.1. $M_0(G)$ is an L-ideal.

Presented to the Society, November 29, 1969 under the title On $M_0(G)$ and the quotient $M(G)/M_0(G)$ of a measure algebra; received by the editors April 13, 1970.

AMS 1969 subject classifications. Primary 4250, 4256; Secondary 2220, 2813, 2840, 4680.

Key words and phrases. Prime ideals of measures, Fourier-Stieltjes transforms.

Copyright © 1971, American Mathematical Society
Proof. Since $M_0(G)$ is obviously an ideal, we show $\mu \in M_0(G)$ and $\nu \ll \mu$ imply $\nu \in M_0(G)$.

For each $\epsilon > 0$, there exists an element $g \in \mathbb{C}(G)$, such that

(i) $g \in C_c(T)$,

(ii) if $d\omega = gd\mu$, then $|\omega - \nu| < \epsilon$.

Let F be the support of g, and let $|\mu(\gamma)| < \epsilon/\|g\|$ if $\gamma \notin E$ be a compact set.

Then $|\phi(\gamma)| < 2\epsilon$ outside $E + F$, so $|\phi(\gamma)| < 3\epsilon$ if $\gamma \in E + F$. Q.E.D.

Lemma 0.2 [6, p. 372]. If $\mu, \nu \in M(G)$ are positive measures and $\mu \ll \mu, \nu \ll \nu$, then $\mu \ast \nu \ll \mu \ast \nu$.

1. Proof of Theorem. To prove the Theorem, we use a technique of Hewitt and Zuckerman:

Definition 1.1. A subset A of a group Γ is dissassociate [3] if for any N and any choice $e_3 \in \{-2, -1, 0, 1, 2\}$ and $\lambda_j \in \Lambda (j = 1, \ldots, N)$,

$$\sum_{j=1}^{N} e_3 \lambda_j = 0 \Rightarrow e_1 \lambda_1 = \cdots = \lambda_N = 0 \Gamma.$$

Theorem 1.2 (Hewitt and Zuckerman [3, Theorems 3.2 and 4.4]). Let G be either the circle group T or a compact 0-dimensional metric group. Then there is an infinite dissassociate subset $\{\lambda_j\}_{j=1}^\infty \subseteq \Gamma$ such that for any choice $\beta = \{\beta_j; j = 1, 2, \cdots\}$ of real numbers $|\beta_j| \leq 1/2$ there exists a continuous positive measure $\mu \in M(G)$ with

$$\mu(\gamma) = \prod_{n=1}^{N} \beta_j \quad \text{if} \quad \gamma = \sum_{n=1}^{N} e_j \lambda_n, \quad e_j = \pm 1,$$

(i) $= 1$ if $\gamma = 0 \Gamma$,

(ii) $= 0$ otherwise.

Furthermore

(iii) μ is singular if $\sum |\beta_j|^2 = \infty$. Otherwise μ is absolutely continuous.

Corollary 1.3. Let G be either the group T or a compact abelian 0-dimensional metric group. Then $M(G)$ contains positive nonzero measures μ, ν such that

(i) $\mu, \nu \in M_0(G)^\perp$,

(ii) $\mu \ast \nu \in M_0(G)$.

Proof. Let
\[\beta^{(1)} = \{ \beta_j^{(1)} : \beta_2^{(1)} = 1/j, \beta_{2j+1}^{(1)} = 1/2 \}, \]
\[\beta^{(2)} = \{ \beta_j^{(2)} : \beta_2^{(2)} = 1/2, \beta_{2j+1}^{(2)} = 1/j \}. \]

If \(\mu_1 \) is the measure constructed by Theorem 1.2 for \(\beta^{(1)} \) and \(\nu_1 \) is that for \(\beta^{(2)} \), then \(\mu_1 \ast \nu_1 \) is by (i) the measure from \(\beta^{(3)} = \{ \beta_j^{(1)} \beta_j^{(2)} \} \). Hence \(\mu \ast \nu \in M_0(G) \).

Since \(\mu_1, \nu_1 \in M_0(G) \), there exist positive measures \(0 \neq \mu \ll \mu_1, 0 \neq \nu \ll \nu_1 \) such that \(\mu, \nu \in M_0(G)^\perp \). By Lemma 0.2, \(\mu \ast \nu \ll \mu_1 \ast \nu_1 \). Since \(M_0(G) \) is an \(\mathcal{L} \)-ideal, \(\mu \ast \nu \in M_0(G) \). Q.E.D.

Corollary 1.4. Let \(G \) be an compact abelian group. Then \(M(G) \) contains positive nonzero measures \(\mu \) and \(\nu \) such that
(i) \(\mu, \nu \in M_0(G)^\perp \),
(ii) \(\mu \ast \nu \in M_0(G) \).

Proof [3]. Either \(\Gamma \) contains an element \(\gamma_0 \) of infinite order, or \(\Gamma \) contains an infinite countable torsion subgroup. In the first case, let \(\Lambda \) be the subgroup \(\gamma_0 \) generates; in the second case let \(\Lambda \) be the infinite torsion subgroup. Let \(H = \{ h \in G : (h, \lambda) = 1, \lambda \in \Lambda \} \). Then \(\hat{\Lambda} = G/H \) and \(G/H \) satisfies the hypotheses of Theorem 1.6. Hence there are positive measures \(\mu_1, \nu_1 \in M_0(G/H)^\perp \) such that \(\mu_1 \ast \nu_1 \in M_0(G/H) \).

Let \(\omega \) be Haar measure on the compact group \(H \). Then \(G \rightarrow G/H \) induces an isomorphism \(\pi \) of the subalgebra \(\omega \ast M(G) \) with \(M(G/H) \). Let \(\mu, \nu \in \omega \ast M(G) \) such that \(\mu \rightarrow \mu_1 \) and \(\nu \rightarrow \nu_1 \). Since \(\omega(\gamma) = 1 \) if \(\gamma \in \Lambda \) and \(\omega(\gamma) = 0 \) otherwise, we see that \(\mu \ast \nu \in M_0(G) \).

On the other hand if \(\sigma \ll \mu, \sigma \geq \mu, \) and \(\sigma \in M_0(G) \), then \(\pi \sigma \in M_0(G/H) \) and \(\pi \sigma = 0 \). Since \(\sigma \geq 0, \| \sigma \| = \| \pi \sigma \| = 0 \) and \(\sigma = 0 \). Thus \(\mu \) (and by the same argument \(\nu \)) is an element of \(M_0(G)^\perp \). Q.E.D.

We now use the structure theorem for locally compact abelian groups to extend Corollary 1.4 to the general group:

\(G \) may be written \(G = R^n \times D \) [2, p. 389] where \(D \) has a compact open subgroup and \(n \geq 0 \).

We first suppose \(n = 0 \), and let \(C \) be the compact open subgroup of \(D = G \). Then by 1.4, there are positive measures \(\mu, \nu \) concentrated on \(C \), which, as elements of \(C \), satisfy \(\mu, \nu \in M_0(C)^\perp \) and \(\mu \ast \nu \in M_0(G) \).

We claim \(\mu, \nu \in M_0(G)^\perp \) and \(\mu \ast \nu \in M_0(G) \). The first assertion follows from the fact that \(M(C) \) is an \(\mathcal{L} \)-subalgebra of \(M(G) \). The second follows from the fact that \((\mu \ast \nu)^\ast \) is constant on the cosets of the compact subgroup \(\Lambda \) of \(\Gamma \):

\[\Lambda = \{ \gamma \in \Gamma : (x, \gamma) = 1 \text{ for all } x \in C \}. \]
We now suppose \(n > 0 \), and that \(\mu_1, \nu_1 \in M_0(C)^\perp \) and \(\mu_1 \ast \nu_1 \in M_0(C) \).

Let \(\mu_2, \nu_2 \) be positive measures on the \(n \)-torus \(T^n \) such that \(\mu_2, \nu_2 \in M_0(T^n)^\perp \) and \(\mu_2 \ast \nu_2 \in M_0(T^n) \). We will "lift" \(\mu_2 \) and \(\nu_2 \) to \(\mathbb{R}^n \) obtaining \(\mu_3 \) and \(\nu_3 \) and show that \(\mu_3, \nu_3 \in M_0(\mathbb{R}^n)^\perp \), while \(\mu_3 \ast \nu_3 \in M_0(\mathbb{R}^n) \). Lemmas 1.5 and 1.6 will then show that \(\mu = \mu_3 \times \mu_1 \) and \(\nu = \nu_3 \times \nu_1 \in M_0(G)^\perp \), and \(\mu \ast \nu \in M_0(G) \), so the proof of the theorem will be complete.

Lemma 1.5. Let \(\mu \in M(G), \nu \in M(H) \). Then

(i) \(\mu \in M_0(G) \) and \(\nu \in M_0(H) \) imply \(\mu \times \nu \in M_0(G \times H) \);

(ii) \(\mu \in M_0(G)^\perp \) implies \(\mu \times \nu \in M_0(G \times H)^\perp \).

Proof. (i) The dual group of \(G \times H \) is \(\hat{G} \times \hat{H} \).

Suppose \(|\hat{\mu}| < \epsilon \) outside a compact set \(E \subseteq \hat{G} \) and \(|\hat{\nu}| < \epsilon \) outside a compact set \(F \subseteq \hat{H} \).

Thus

\[
|\hat{\mu} \times \hat{\nu}(\gamma, \rho)| = |\hat{\mu}(\gamma)\hat{\nu}(\rho)| < \epsilon \langle ||\mu \times \nu|| \rangle
\]

if \((\gamma, \rho) \notin E \times F \). Hence \(\mu \times \nu \in M_0(G \times H) \).

(ii) Let \(\omega \in M_0(G \times H) \) where \(\omega \ll \mu \times \nu \), say \(d\omega = f(x, y)d\mu(x)d\nu(y) \), where \(f \) is a Borel function on \(G \times H \). Since \(M_0(G \times H) \) is an \(L \)-ideal, we may assume \(f \) is bounded. Then choose \((\gamma, \rho) \in \hat{G} \times \hat{H} \) so \(\omega(\gamma, \rho) \neq 0 \).

\[
\omega(\gamma, \rho) = \int \int (x, \gamma)(y, \rho)f(x, y)d\mu(x)d\nu(y)
\]

\[
= \int \int (x, \gamma)(y, \rho)f(x, y)d\nu(y)d\mu(x)
\]

\[
= \int (x, \gamma)F(x)d\mu(x),
\]

where the second line is a consequence of Fubini's Theorem and \(F(x) = \int (y, \rho)f(x, y)d\nu(y) \). Then the measure \(d\sigma = F(x)d\mu(x) \) is a nonzero element of \(M_0(G)^\perp \). Hence \(\omega(\gamma, \rho) \neq 0 \) as \((\gamma, \rho) \to \infty \). Q.E.D.

We now lift our measures: If \(\omega \in M(T^n) \), define \(\omega^\sharp \in M(\mathbb{R}^n) \) by

\[
\omega^\sharp(E) = \omega(E \cap [0, 2\pi)^n)
\]

for each Borel subset \(E \subseteq \mathbb{R}^n \). \([0, 2\pi)^n \) is identified with \(T^n \) by \((x_1, \ldots, x_n) \to (e^{ix_1}, \ldots, e^{ix_n}) \).

Let \(P: M(\mathbb{R}^n) \to M(T^n) \) be the map induced by \(\mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n = T^n \).

Lemma 1.6. If \(\mu, \nu \in M(T^n) \) are positive measures; then

(i) \(P(\mu^\flat) = \mu \);
(ii) \(\mu \in M_0(T^n)^\perp \) implies \(\mu^* \in M_0(\mathbb{R}^n)^\perp \);
(iii) \(\mu * \nu \in M_0(T^n) \) implies \(\mu^* * \nu^* \in M_0(\mathbb{R}^n) \).

Proof. (i) is obvious. Let \(\nu \ll \mu \). Then \(P\nu \ll \mu \), so \(P\nu \perp M_0(T^n) \) if \(\mu \perp M_0(T^n) \). Hence \((P\nu)^* \) does not vanish at infinity. Since \(((P\nu)^*)^* = \rho \) takes (on \(\mathbb{R}^n \)) values which include the values of \((P\nu)^* \) on \(\mathbb{Z}^n \), \(\nu \subseteq M_0(\mathbb{R}^n) \). Hence \(\mu^* \perp M_0(\mathbb{R}^n) \). Hence (ii) holds.

To prove (iii) first write each element \(q = (q_1, \ldots, q_n) \in \mathbb{R}^n \) as
\[
(q_1, \ldots, q_n) = (2\pi m_1 + r_1, \ldots, 2\pi m_n + r_n) = 2\pi m + r
\]
where \(r = (r_1, \ldots, r_n) \in [0, 2\pi)^n \) and \(m \in \mathbb{Z}^n \). Then
\[
(\mu^* * \nu^*)(q) = \mu_r(m) \nu_r(m),
\]
where \(d\mu_r(x) = \exp(2\pi ix \cdot r) d\mu(x) \) and \(d\nu_r(x) = \exp(2\pi ix \cdot r) d\nu(x) \).

From the next lemma we see that \(\mu^* * \nu^* \in M_0(\mathbb{R}^n) \), so Lemma 1.6 is proved.

Lemma 1.7. Let \(\mu, \nu \in M(T^n) \) be positive measures, and suppose \(\mu * \nu \in M_0(T^n) \). Then for each \(\delta > 0 \) there is a compact set \(E \subseteq \mathbb{Z}^n \) such that \(m \in E \) and \(r \in [0, 2\pi)^n \) imply \(|(\mu_r * \nu_r)^*(m)| < \delta \).

Proof. Since \(\mu_r \ll \mu \) and \(\nu_r \ll \nu \), Lemmas 0.1 and 0.2 imply \(\mu_r * \nu_r \ll \mu * \nu \), and \(\mu_r * \nu_r \in M_0(T^n) \). Let \(F_r \subseteq \mathbb{Z}^n \) be such that \(m \in F_r \) implies \(|(\mu_r * \nu_r)^*(m)| < \delta/2 \). The obvious norm-continuity of \(r \rightarrow \mu_r * \nu_r \), and the compactness of \([0, 2\pi]^n \) show that for a union \(E \) of a finite number \(F_{r_1}, \ldots, F_{r_n} \) of the \(F_r \) we have
\[
m \notin E = F_{r_1} \cup \cdots \cup F_{r_n} \text{ implies } |(\mu_r * \nu_r)^*(m)| < \delta
\]
for all \(r \in [0, 2\pi]^n \). Q.E.D.

References

