$M_0(G)$ IS NOT A PRIME L-IDEAL OF MEASURES

COLIN C. GRAHAM

Abstract. A technique of Hewitt and Zuckerman is used to show that if G is any locally compact abelian group with dual Γ, then there exist nonzero positive regular Borel measures μ, ν on G, each one of which is mutually singular with each measure ω whose Fourier-Stieltjes transform vanishes at infinity on Γ and such that the Fourier-Stieltjes transform of the convolution $\mu \ast \nu$ vanishes at infinity on Γ.

0. Introduction. $M(G)$ is the *Banach algebra of regular Borel measures on a nondiscrete LCA group G, and $M_0(G)$ is the ideal of those measures whose Fourier-Stieltjes transforms vanish at infinity on the dual Γ of G.

An L-subspace (band) in $M(G)$ is a closed subspace I such that if $\mu \in I$ and $\nu \in M(G)$ is absolutely continuous with respect to μ then $\nu \in I$. The set $I^\perp = \{\mu: \mu$ is singular with each $\nu \in I\}$ is called the complement of I. We write $\mu \perp \nu$ if μ and ν are mutally singular. Each L-subspace gives a direct sum decomposition $M(G) = I \oplus I^\perp$.

An L-ideal I in $M(G)$ is an ideal which is an L-subspace. An L-ideal I is prime if I^\perp is a subalgebra. Lemma 0.1 shows $M_0(G)$ is an L-ideal.

We prove the following:

Theorem. Let G be a nondiscrete LCA group. Then $M_0(G)^\perp$ contains positive nonzero measures μ, ν such that $\mu \ast \nu \in M_0(G)$.

Corollary. $M_0(G)$ is not a prime L-ideal.

Comments. Prime L-ideals have been constructed by Raïkov (see [1]), Simon [5], Varopoulos [8], and Šreïder [6]. Taylor [7] has characterized prime L-ideals in terms of generalized characters. Hewitt and Zuckerman [3] have shown that $L^1(G)$ is not a prime L-ideal.

We use the notation of [4]. $\nu \ll \mu$ means ν is absolutely continuous with respect to μ.

Lemma 0.1. $M_0(G)$ is an L-ideal.

Presented to the Society, November 29, 1969 under the title On $M_0(G)$ and the quotient $M(G)/M_0(G)$ of a measure algebra; received by the editors April 13, 1970.

AMS 1969 subject classifications. Primary 4250, 4256; Secondary 2220, 2813, 2840, 4680.

Key words and phrases. Prime ideals of measures, Fourier-Stieltjes transforms.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Since $M_0(G)$ is obviously an ideal, we show $\mu \in M_0(G)$ and $\nu \ll \mu$ imply $\nu \in M_0(G)$.

For each $\epsilon > 0$, there exists an element $g \in A(G)$, such that

(i) $g \in C_c(\Gamma)$,
(ii) if $d\omega = gd\mu$, then $||\omega - \nu|| < \epsilon$.

Let F be the support of g, and let $|\mu(\gamma)| < \epsilon/\|g\|$ if $\gamma \in \mathbb{E}$ be a compact set.

Then $|\omega(\gamma)| < 2\epsilon$ outside $E + F$, so $|\mu(\gamma)| < 3\epsilon$ if $\gamma \in \mathbb{E} + F$. Q.E.D.

Lemma 0.2 [6, p. 372]. If $\mu, \nu \in M(G)$ are positive measures and $\mu_1 \ll \mu, \nu_1 \ll \nu$, then $\mu_1 \ast \nu_1 \ll \mu \ast \nu$.

1. Proof of Theorem. To prove the Theorem, we use a technique of Hewitt and Zuckerman:

Definition 1.1. A subset A of a group Γ is dissassociate [3] if for any N and any choice $\epsilon_j \in \{-2, -1, 0, 1, 2\}$ and $\lambda_j \in \Lambda (j = 1, \ldots, N)$,

\[\sum_{j=1}^{N} \epsilon_j \lambda_j = 0 \Rightarrow \epsilon_1 \lambda_1 = \cdots = \epsilon_N \lambda_N = 0. \]

Theorem 1.2 (Hewitt and Zuckerman [3, Theorems 3.2 and 4.4]). Let G be either the circle group T or a compact 0-dimensional metric group. Then there is an infinite dissassociate subset $\{\lambda_j\}_{j=1}^{\infty} = \Lambda \subseteq \Gamma$ such that for any choice $\beta = \{\beta_j : j = 1, 2, \ldots\}$ of real numbers $|\beta_j| \leq 1/2$ there exists a continuous positive measure $\mu \in M(G)$ with

\[\mu(\gamma) = \prod_{n=1}^{N} \beta_{j_n} \] if $\gamma = \sum_{n=1}^{N} \epsilon_{j_n} \lambda_{j_n}, \epsilon_{j_n} = \pm 1$,

\[= 1 \quad \text{if } \gamma = 0, \]

\[= 0 \quad \text{otherwise}. \]

(i) $\mu \geq 0$ and $||\mu|| \leq 1$.

Furthermore

(ii) μ is singular if $\sum |\beta_j|^2 = \infty$. Otherwise μ is absolutely continuous.

Corollary 1.3. Let G be either the group T or a compact abelian 0-dimensional metric group. Then $M(G)$ contains positive nonzero measures μ, ν such that

(i) $\mu, \nu \in M_0(G)^+$,

(ii) $\mu \ast \nu \in M_0(G)$.

Proof. Let
\[\beta^{(1)} = \{ \beta_j^{(1)} : \beta_{2j}^{(1)} = 1/j, \beta_{2j+1}^{(1)} = 1/2 \}, \]
\[\beta^{(2)} = \{ \beta_j^{(2)} : \beta_{2j}^{(2)} = 1/2, \beta_{2j+1}^{(2)} = 1/j \}. \]

If \(\mu_1 \) is the measure constructed by Theorem 1.2 for \(\beta^{(1)} \) and \(\nu_1 \) is the measure for \(\beta^{(2)} \), then \(\mu_1 \ast \nu_1 \) is by (i) the measure from \(\beta^{(3)} = \{ \beta_j^{(1)} \beta_j^{(2)} \} \). Hence \(\mu \ast \nu \in M_0(G) \).

Since \(\mu_1, \nu_1 \in M_0(G) \), there exist positive measures \(0 \neq \mu \ll \mu_1, 0 \neq \nu \ll \nu_1 \) such that \(\mu, \nu \in M_0(G)^\perp \). By Lemma 0.2, \(\mu \ast \nu \ll \mu_1 \ast \nu_1 \). Since \(M_0(G) \) is an \(L \)-ideal, \(\mu \ast \nu \in M_0(G) \). Q.E.D.

Corollary 1.4. Let \(G \) be an compact abelian group. Then \(M(G) \) contains positive nonzero measures \(\mu \) and \(\nu \) such that

(i) \(\mu, \nu \in M_0(G)^\perp \),

(ii) \(\mu \ast \nu \in M_0(G) \).

Proof [3]. Either \(\Gamma \) contains an element \(\gamma_0 \) of infinite order, or \(\Gamma \) contains an infinite countable torsion subgroup. In the first case, let \(\Lambda \) be the subgroup \(\gamma_0 \) generates; in the second case let \(\Lambda \) be the infinite torsion subgroup. Let \(H = \{ g \in G : (h, \lambda) = 1, \lambda \in \Lambda \} \). Then \(\hat{\gamma} = G/H \) and \(G/H \) satisfies the hypotheses of Theorem 1.6. Hence there are positive measures \(\mu_1, \nu_1 \in M_0(G/H)^\perp \) such that \(\mu_1 \ast \nu_1 \in M_0(G/H) \).

Let \(\omega \) be Haar measure on the compact group \(H \). Then \(G \rightarrow G/H \) induces an isomorphism \(\pi \) of the subalgebra \(\omega \ast M(G) \) with \(M(G/H) \). Let \(\mu, \nu \in \omega \ast M(G) \) such that \(\mu \rightarrow \mu_1 \) and \(\nu \rightarrow \nu_1 \). Since \(\delta(\gamma) = 1 \) if \(\gamma \in \Lambda \) and \(\delta(\gamma) = 0 \) otherwise, we see that \(\mu \ast \nu \in M_0(G) \).

On the other hand if \(\sigma \ll \mu, \sigma \geq \mu, \) and \(\sigma \in M_0(G) \), then \(\pi \sigma \in M_0(G/H) \) and \(\pi \sigma \ll \mu_1 \). Hence, \(\pi \sigma = 0 \). Since \(\sigma \geq 0 \), \(\| \sigma \| = \| \pi \sigma \| = 0 \) and \(\sigma = 0 \). Thus \(\mu \) (and by the same argument \(\nu \)) is an element of \(M_0(G)^\perp \). Q.E.D.

We now use the structure theorem for locally compact abelian groups to extend Corollary 1.4 to the general group:

\(G \) may be written \(G = R^n \times D \) [2, p. 389] where \(D \) has a compact open subgroup and \(n \geq 0 \).

We first suppose \(n = 0 \), and let \(C \) be the compact open subgroup of \(D = G \). Then by 1.4, there are positive measures \(\mu, \nu \) concentrated on \(C \), as elements of \(C \), satisfy \(\mu, \nu \in M_0(C)^\perp \) and \(\mu \ast \nu \in M_0(G) \).

We claim \(\mu, \nu \in M_0(G)^\perp \) and \(\mu \ast \nu \in M_0(G) \). The first assertion follows from the fact that \(M(C) \) is an \(L \)-subalgebra of \(M(G) \). The second follows from the fact that \((\mu \ast \nu)^\ast \) is constant on the cosets of the compact subgroup \(\Delta \) of \(\Gamma \):

\[\Delta = \{ \gamma \in \Gamma : (x, \gamma) = 1 \text{ for all } x \in C \} \].
We now suppose $n > 0$, and that $\mu_1, \nu_1 \in M_0(C)^\perp$ and $\mu_1 \ast \nu_1 \in M_0(C)$.

Let μ_2, ν_2 be positive measures on the n-torus T^n such that $\mu_2, \nu_2 \in M_0(T^n)^\perp$ and $\mu_2 \ast \nu_2 \in M_0(T^n)$. We will "lift" μ_2 and ν_2 to R^n obtaining μ_3 and ν_3 and show that $\mu_3, \nu_3 \in M_0(R^n)^\perp$, while $\mu_3 \ast \nu_3 \in M_0(R^n)$. Lemmas 1.5 and 1.6 will then show that $\mu = \mu_3 \ast \mu_1$ and $\nu = \nu_3 \ast \nu_1 \in M_0(G)^\perp$, and $\mu \ast \nu \in M_0(G)$, so the proof of the theorem will be complete.

Lemma 1.5. Let $\mu \in M(G), \nu \in M(H)$. Then

(i) $\mu \in M_0(G)$ and $\nu \in M_0(H)$ imply $\mu \ast \nu \in M_0(G \times H)$;

(ii) $\mu \in M_0(G)^\perp$ implies $\mu \ast \nu \in M_0(G \times H)^\perp$.

Proof. (i) The dual group of $G \times H$ is $\hat{G} \times \hat{H}$.

Suppose $|\hat{\mu}| < \epsilon$ outside a compact set $E \subseteq \hat{G}$ and $|\hat{\nu}| < \epsilon$ outside a compact set $F \subseteq \hat{H}$. Then

$$|\hat{\mu} \ast \hat{\nu}(\gamma, \rho)| = |\hat{\mu}(\gamma)\hat{\nu}(\rho)| < \epsilon(\|\mu \ast \nu\|)$$

if $(\gamma, \rho) \notin E \times F$. Hence $\mu \ast \nu \in M_0(G \times H)$.

(ii) Let $\omega \in M_0(G \times H)$ where $\omega \ll \mu \ast \nu$, say $d\omega = f(x, y) \, d\mu(x) \, d\nu(y)$, where f is a Borel function on $G \times H$. Since $M_0(G \times H)$ is an L-ideal, we may assume f is bounded. Then choose $(\gamma, \rho) \in \hat{G} \times \hat{H}$ so $\delta(\gamma, \rho) \neq 0$.

$$\delta(\gamma, \rho) = \int \int (x, \gamma(x, y), f(x, y) \, d\mu(x) \, d\nu(y)$$

$$= \int \int (x, \gamma(x, y), f(x, y) \, d\nu(y) \, d\mu(x)$$

$$= \int (x, \gamma) F(x) \, d\mu(x),$$

where the second line is a consequence of Fubini's Theorem and $F(x) = \int (y, \rho) f(x, y) \, d\nu(y)$. Then the measure $d\sigma = F(x) \, d\mu(x)$ is a nonzero element of $M_0(G)^\perp$. Hence $\delta(\gamma, \rho) \rightarrow 0$. Hence $\hat{\omega}(\gamma, \rho) \rightarrow 0$ as $(\gamma, \rho) \rightarrow \infty$. Q.E.D.

We now lift our measures: If $\omega \in M(T^n)$, define $\omega^\ast \in M(R^n)$ by

$$\omega^\ast(E) = \omega(E \cap [0, 2\pi)^n)$$

for each Borel subset $E \subseteq R^n$. $([0, 2\pi)^n$ is identified with T^n by $(x_1, \ldots, x_n) \rightarrow (e^{i\pi x_1}, \ldots, e^{i\pi x_n})$.

Let $P : M(R^n) \rightarrow M(T^n)$ be the map induced by $R^n \rightarrow R^n / \mathbf{Z} = T^n$.

Lemma 1.6. If $\mu, \nu \in M(T^n)$ are positive measures; then

(i) $P(\mu \ast) = \mu$;
(ii) \(\mu \in M_0(T^n)^\perp \) implies \(\mu^\perp \in M_0(R^n)^\perp \);
(iii) \(\mu \ast \nu \in M_0(T^n) \) implies \(\mu^\perp \ast \nu^\perp \in M_0(R^n) \).

Proof. (i) is obvious. Let \(\nu \ll \mu \), so \(P\nu \perp M_0(T^n) \) if \(\mu \perp M_0(T^n) \). Hence \((P\nu)^\perp \) does not vanish at infinity. Since \(((P\nu)^\perp)^\perp = \delta \) takes (on \(R^n \)) values which include the values of \((P\nu)^\perp \) on \(Z^n \), \(\nu \notin M_0(R^n) \). Hence \(\mu^\perp \perp M_0(R^n) \). Hence (ii) holds.

To prove (iii) first write each element \(q = (q_1, \ldots, q_n) \in R^n \) as

\[
(q_1, \ldots, q_n) = (2\pi m_1 + r_1, \ldots, 2\pi m_n + r_n) = 2\pi m + r
\]

where \(r = (r_1, \ldots, r_n) \in [0, 2\pi]^n \) and \(m \in Z^n \). Then

\[
(\mu^\perp \ast \nu^\perp)(q) = \mu_r(m)\nu_r(m),
\]

where \(d\mu_r(x) = \exp(2\pi i x \cdot r)d\mu(x) \) and \(d\nu_r(x) = \exp(2\pi i x \cdot r)d\nu(x) \).

From the next lemma we see that \(\mu^\perp \ast \nu^\perp \in M_0(R^n) \), so Lemma 1.6 is proved.

Lemma 1.7. Let \(\mu, \nu \in M(T^n) \) be positive measures, and suppose \(\mu \ast \nu \in M_0(T^n) \). Then for each \(\delta > 0 \) there is a compact set \(E \subseteq Z^n \) such that \(m \in E \) and \(r \in [0, 2\pi]^n \) imply \(|(\mu_r \ast \nu_r)^\perp(m)| < \delta \).

Proof. Since \(\mu \ll \mu \) and \(\nu \ll \nu \), Lemmas 0.1 and 0.2 imply \(\mu_r \ast \nu_r \ll \mu \ast \nu \), and \(\mu_r \ast \nu_r \in M_0(T^n) \). Let \(F_r \subseteq Z^n \) be such that \(m \in F_r \) implies \(|(\mu_r \ast \nu_r)^\perp(m)| < \delta/2 \). The obvious norm-continuity of \(r \rightarrow \mu_r \ast \nu_r \) and the compactness of \([0, 2\pi]^n \) show that for a union \(E \) of a finite number \(F_{r_1}, \ldots, F_{r_n} \) of the \(F_r \) we have

\[
m \in E = F_{r_1} \cup \cdots \cup F_{r_n} \text{ implies } |(\mu_r \ast \nu_r)^\perp(m)| < \delta
\]

for all \(r \in [0, 2\pi]^n \). Q.E.D.

References

Northwestern University, Evanston, Illinois 60201