CHARACTERIZATIONS OF THE GENERALIZED CONVEX KERNEL

ARTHUR G. SPARKS

Abstract. It is well known that the convex kernel K of a set S is the intersection of all maximal convex subsets of S. In this paper it is shown that the nth order kernel of a compact, simply-connected set S in the plane is an L_n set and is, in fact, the intersection of all maximal L_n subsets of S. Furthermore, it is shown that one does not have to intersect the family of all the maximal L_n subsets to obtain the nth order kernel, but that any subfamily thereof which covers the set is sufficient.

1. Preliminaries. Throughout this paper, all sets will be in E_2. If B is a set, then \overline{B} will denote its closure, $\text{bd } B$ its boundary, and B^c its complement. If x and y are points, then $P_n(x, y)$ will denote a polygonal n-path joining x to y.

Let A be a set and let x be in A. Then $K(n, x, A)$ will denote the nth order kernel of x in A. The nth order kernel of A will be denoted by $K(n, A)$. For precise definitions of $K(n, x, A)$ and $K(n, A)$, see [2].

Definition. A compact set S is said to be simply-connected if and only if S^c is connected.

Hereafter, S will denote a compact, simply-connected set. It is important to remember that if J is a closed Jordan curve in S, then the interior of the Jordan curve J is contained in S.

Definition. Suppose that $p, q \in S$ and $C(p, q)$ is a polygonal path from p to q in S. Then $C(p, q)$ is called a minimal 1-path if $C(p, q)$ is the segment $[p, q]$. Let $k > 1$, then $C(p, q)$ is called a minimal k-path if $C(p, q)$ is a k-path of minimal length joining p to q in S and $p \in K(k-1, q, S)$.

Several results in a previous paper by this author [2] will be stated for later use.

Theorem 1.1. Let A be a set and let B be an L_n subset of A. Then B is contained in a maximal L_n subset of A.

Theorem 1.2. Suppose $p \in K(m, q, S)$ for some m. Then there exists a minimal k-path from p to q in S for some k such that $1 \leq k \leq m$.

Presented to the Society, August 29, 1969 under the title A characterization of the generalized convex kernel; received by the editors December 7, 1969 and, in revised form, April 15, 1970.

AMS 1970 subject classifications. Primary 52-XX, 52A10.

Key words and phrases. Convex kernel, generalized convex kernel, L_n sets.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 1.3. Suppose that \(p, q \in K(n, x, S) \). Let \(C_k(p, q) \) be a minimal \(k \)-path from \(p \) to \(q \) in \(S \), then \(C_k(p, q) \subset K(n, x, S) \).

Theorem 1.4. Let \(L_n = \{ L_\alpha | \alpha \in \Delta_n \} \) be the set of all maximal \(L_n \) subsets of \(S \). Then each \(L_\alpha \) is compact and simply-connected. Furthermore, \(\bigcap L_n \) is a compact, simply-connected, \(L_n \) set.

2. Characterizations of \(K(n, S) \).

Theorem 2.1. Let \(A \) be a compact, \(L_n \) subset of \(S \). Suppose \(x \in S \) is such that \(A \in K(n, x, S) \). Then \(A \cup \{ x \} \) is contained in an \(L_n \) subset of \(S \).

Proof. Let \(a \in A \). Since \(x \in K(n, a, S) \), it follows from Theorem 1.2 that there exists a minimal \(k(a) \)-path \(C_{k(a)}(a, x) \) joining \(a \) to \(x \) in \(S \), where \(k(a) \leq n \). Let \(G = \bigcup \{ C_{k(a)}(a, x) | a \in A \} \) and let \(D \) be the smallest compact, simply-connected set in \(S \) which contains \(G \).

Suppose that \(p, q \in G \). Then there exist \(a_0, a_1 \in A \) such that \(p \in C_{k(a_0)}(a_0, x) \) and \(q \in C_{k(a_0)}(a_1, x) \). It is clear that \(x \in K(n, a_1, D) \) and \(a_2 \in K(n, a_1, D) \). Since \(C_{k(a_2)}(a_2, x) \subset D \), it follows from Theorem 1.3 that \(C_{k(a_2)}(a_2, x) \subset K(n, a_1, D) \). In particular, \(q \in K(n, a_1, D) \) and thus \(a_1 \in K(n, q, D) \). Now since \(x \in K(n, q, D) \) and \(C_{k(a_1)}(a_1, x) \) is also a minimal \(k(a_1) \)-path in \(D \), it follows again by Theorem 1.3 that \(C_{k(a_1)}(a_1, x) \subset K(n, q, D) \). In particular, it is true that \(p \in K(n, q, D) \).

Now suppose that \(p, q \in E \) \(D \). It is clear that \(\partial D \subset G \). Since \(p, q \in G \), there exist sequences \(\{ p_i \} \) and \(\{ q_i \} \) in \(G \) such that \(\{ p_i \} \to p \) and \(\{ q_i \} \to q \).

Let \(i \) and \(j \) be arbitrary, then from the preceding it follows that \(p_i \in K(n, q_j, D) \) since \(p_i, q_j \in G \). Now \(i \) arbitrary implies that \(\{ p_i \} \subset K(n, q_j, D) \). It has been shown by Bruckner and Bruckner [1], that \(K(n, q_j, D) \) is compact. Thus, it follows that \(p \in K(n, q_j, D) \). Hence, \(q_j \in K(n, p, D) \) where \(j \) is arbitrary and thus \(\{ q_i \} \subset K(n, p, D) \). As before, \(K(n, p, D) \) is compact and hence \(q \in K(n, p, D) \). Since \(p, q \in \partial D \) were arbitrary, it follows by another result of Bruckner and Bruckner [1] that \(D \) is an \(L_n \) set. It is clear that \(A \cup \{ x \} \subset D \subset S \).

This completes the proof.

Theorem 2.2. Let \(L_n = \{ L_\alpha | \alpha \in \Delta_n \} \) be the set of all maximal \(L_n \) subsets of \(S \). Then \(K(n, S) = \bigcap L_n \).

Proof. Clearly, \(\bigcap L_n \subset K(n, S) \).

Suppose that \(x \) is in \(K(n, S) \) but not in \(L_\alpha \), for some \(\alpha \in \Delta_n \). Since \(L_\alpha \subset K(n, x, S) \), Theorem 2.1 implies that \(L_\alpha \) and \(x \) are both contained in an \(L_n \) subset of \(S \), contradicting the maximality of \(L_\alpha \). Hence, \(K(n, S) \subset \bigcap L_n \).
Combining the above, the desired result is obtained. The same technique can be used to prove the following result:

Theorem 2.3. Let $\mathcal{L}'_n \subseteq \mathcal{L}_n$ be such that $\bigcup \mathcal{L}'_n = S$, then $\bigcap \mathcal{L}'_n = K(n, S)$.

Theorem 2.4. The set $K(n, S)$ is an L_n set.

Proof. Combine Theorems 1.4 and 2.2.

References

Clemson University, Clemson, South Carolina 29631

Georgia Southern College, Statesboro, Georgia 30458