On the topological classification of the floors of certain Hilbert fundamental domains
HTML articles powered by AMS MathViewer
- by Michael H. Hall PDF
- Proc. Amer. Math. Soc. 28 (1971), 67-70 Request permission
Abstract:
Associated to the field $Q({k^{1/2}})$ ($k$ a positive square free integer greater than one), there is a group of transformations of the product of two upper half planes which is analogous to the Hilbert modular group. This group has been shown to have a fundamental domain bounded by a finite number of hypersurfaces. Of particular interest is a subspace of the domain known as the “floor.” This floor is a quotient space of a fiber bundle over the circle which is determined by the field $Q({k^{1/2}})$. The principal result of this paper is that, conversely, the topological type (indeed the homotopy type) of this fiber bundle determines the field $Q({k^{1/2}})$ which gives rise to it. This is accomplished by computing the homology groups of the fiber space and showing that the integer $k$ can be determined from these groups.References
- Otto Blumenthal, Über Modulfunktionen von mehreren Veränderlichen, Math. Ann. 56 (1903), no. 4, 509–548 (German). MR 1511187, DOI 10.1007/BF01444306
- Harvey Cohn, Cusp forms arising from Hilbert’s modular functions for the field of $3^{1/2}$, Amer. J. Math. 84 (1962), 283–305. MR 144884, DOI 10.2307/2372763
- Harvey Cohn, Some elementary aspects of modular functions in several variables, Bull. Amer. Math. Soc. 71 (1965), 681–704. MR 180535, DOI 10.1090/S0002-9904-1965-11343-X
- Harvey Cohn, On the shape of the fundamental domain of the Hilbert modular group, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 190–202. MR 0174528
- Harvey Cohn, A numerical survey of the floors of various Hilbert fundamental domains, Math. Comp. 19 (1965), 594–605. MR 195818, DOI 10.1090/S0025-5718-1965-0195818-4
- Harvey Cohn, A numerical study of topological features of certain Hilbert fundamental domains, Math. Comp. 21 (1967), 76–86. MR 222029, DOI 10.1090/S0025-5718-1967-0222029-8
- Karl-Bernhard Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers $Q(\surd 5)$, Math. Ann. 152 (1963), 226–256 (German). MR 163887, DOI 10.1007/BF01470882
- Sze-tsen Hu, Homology theory: A first course in algebraic topology, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1966. MR 0217786
- Hans Maass, Über Gruppen von hyperabelschen Transformationen, S.-B. Heidelberger Akad. Wiss. 1940 (1940), no. 2, 26 (German). MR 0003405
- Lee Neuwirth, A topological classification of certain $3$-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372–375. MR 146809, DOI 10.1090/S0002-9904-1963-10929-5
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112 J. R. Stallings, On fibering certain $3$-manifolds, Topology of $3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95-100. MR 28 #1600.
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 67-70
- MSC: Primary 10.21
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271029-3
- MathSciNet review: 0271029