## On the topological classification of the floors of certain Hilbert fundamental domains

HTML articles powered by AMS MathViewer

- by Michael H. Hall PDF
- Proc. Amer. Math. Soc.
**28**(1971), 67-70 Request permission

## Abstract:

Associated to the field $Q({k^{1/2}})$ ($k$ a positive square free integer greater than one), there is a group of transformations of the product of two upper half planes which is analogous to the Hilbert modular group. This group has been shown to have a fundamental domain bounded by a finite number of hypersurfaces. Of particular interest is a subspace of the domain known as the “floor.” This floor is a quotient space of a fiber bundle over the circle which is determined by the field $Q({k^{1/2}})$. The principal result of this paper is that, conversely, the topological type (indeed the homotopy type) of this fiber bundle determines the field $Q({k^{1/2}})$ which gives rise to it. This is accomplished by computing the homology groups of the fiber space and showing that the integer $k$ can be determined from these groups.## References

- Otto Blumenthal,
*Über Modulfunktionen von mehreren Veränderlichen*, Math. Ann.**56**(1903), no. 4, 509–548 (German). MR**1511187**, DOI 10.1007/BF01444306 - Harvey Cohn,
*Cusp forms arising from Hilbert’s modular functions for the field of $3^{1/2}$*, Amer. J. Math.**84**(1962), 283–305. MR**144884**, DOI 10.2307/2372763 - Harvey Cohn,
*Some elementary aspects of modular functions in several variables*, Bull. Amer. Math. Soc.**71**(1965), 681–704. MR**180535**, DOI 10.1090/S0002-9904-1965-11343-X - Harvey Cohn,
*On the shape of the fundamental domain of the Hilbert modular group*, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 190–202. MR**0174528** - Harvey Cohn,
*A numerical survey of the floors of various Hilbert fundamental domains*, Math. Comp.**19**(1965), 594–605. MR**195818**, DOI 10.1090/S0025-5718-1965-0195818-4 - Harvey Cohn,
*A numerical study of topological features of certain Hilbert fundamental domains*, Math. Comp.**21**(1967), 76–86. MR**222029**, DOI 10.1090/S0025-5718-1967-0222029-8 - Karl-Bernhard Gundlach,
*Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers $Q(\surd 5)$*, Math. Ann.**152**(1963), 226–256 (German). MR**163887**, DOI 10.1007/BF01470882 - Sze-tsen Hu,
*Homology theory: A first course in algebraic topology*, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1966. MR**0217786** - Hans Maass,
*Über Gruppen von hyperabelschen Transformationen*, S.-B. Heidelberger Akad. Wiss.**1940**(1940), no. 2, 26 (German). MR**0003405** - Lee Neuwirth,
*A topological classification of certain $3$-manifolds*, Bull. Amer. Math. Soc.**69**(1963), 372–375. MR**146809**, DOI 10.1090/S0002-9904-1963-10929-5 - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112**
J. R. Stallings,

*On fibering certain $3$-manifolds*, Topology of $3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95-100. MR

**28**#1600.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**28**(1971), 67-70 - MSC: Primary 10.21
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271029-3
- MathSciNet review: 0271029