A new characterization of Dedekind domains
HTML articles powered by AMS MathViewer
- by E. W. Johnson and J. P. Lediaev
- Proc. Amer. Math. Soc. 28 (1971), 63-64
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271084-0
- PDF | Request permission
Abstract:
In this note it is shown that a Noetherian ring $R$ is a Dedekind domain if every maximal ideal $M$ of $R$ satisfies the cancellation law: if $A$ and $B$ are nonzero ideals of $R$ and $MA = MB$, then $A = B$.References
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., 1968. MR 0229624
- Pierre Samuel, Algèbre locale, Mémor. Sci. Math., no. 123, Gauthier-Villars, Paris, 1953 (French). MR 0054995
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 63-64
- MSC: Primary 13.15
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271084-0
- MathSciNet review: 0271084