On the characteristic roots of real matrices
HTML articles powered by AMS MathViewer
- by H. H. Schaefer PDF
- Proc. Amer. Math. Soc. 28 (1971), 91-92 Request permission
Abstract:
If $A$ is a real $n \times n$-matrix whose absolute $|A|$ has spectral radius 1, and if $\varepsilon$ is a unimodular characteristic value of $A$, then all odd (respectively, even) powers of $\varepsilon$ are characteristic values of $A$ (respectively, of $|A|$). In particular, such $\varepsilon$ must be a $k$th root of unity for some $k, 1 \leqq k \leqq 2n$.References
- Alfred Brauer, On the characteristic roots of non-negative matrices, Recent Advances in Matrix Theory (Proc. Advanced Seminar, Math. Res. Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1963) Univ. Wisconsin Press, Madison, Wis., 1964, pp. pp 3–38. MR 0168575
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, Mass., 1964. MR 0162808
- Gian-Carlo Rota, On the eigenvalues of positive operators, Bull. Amer. Math. Soc. 67 (1961), 556–558; addendum 68 (1961), 49. MR 0131773, DOI 10.1090/S0002-9904-1961-10687-3
- Helmut Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648 (German). MR 35265, DOI 10.1007/BF02230720
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 91-92
- MSC: Primary 15.25
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271126-2
- MathSciNet review: 0271126