Coefficients of meromorphic schlicht functions
HTML articles powered by AMS MathViewer
- by Peter L. Duren PDF
- Proc. Amer. Math. Soc. 28 (1971), 169-172 Request permission
Abstract:
This paper presents an elementary proof of a known theorem on the coefficients of meromorphic schlicht functions: if $f \in \Sigma$ and ${b_k} = 0$ for $1 \leqq k < n/2$, then $|{b_n}| \leqq 2/(n + 1)$.References
- P. L. Duren, Coefficient estimates for univalent functions, Proc. Amer. Math. Soc. 13 (1962), 168–169. MR 158059, DOI 10.1090/S0002-9939-1962-0158059-1
- P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. (2) 61 (1955), 116–136. MR 66457, DOI 10.2307/1969623 G. M. Goluzin, Some estimates of the coefficients of schlicht functions, Mat. Sb. 3 (1938), 321-330. (Russian) —, On $p$-valent functions, Mat. Sb. 8(50) (1940), 277-284. (Russian) MR 2, 185.
- James A. Jenkins, On certain coefficients of univalent functions. II, Trans. Amer. Math. Soc. 96 (1960), 534–545. MR 122978, DOI 10.1090/S0002-9947-1960-0122978-5 Ch. Pommerenke, Unpublished Lecture Notes, March 1969.
- Menahem Schiffer, Sur un problème d’extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48–55 (French). MR 1505083
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 169-172
- MSC: Primary 30.43
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271329-7
- MathSciNet review: 0271329