## On vectorial norms and pseudonorms

HTML articles powered by AMS MathViewer

- by Emeric Deutsch PDF
- Proc. Amer. Math. Soc.
**28**(1971), 18-24 Request permission

## Abstract:

A vectorial pseudonorm (norm) of order $k$ on the vector space ${C^n}$ of all $n$-tuples of complex numbers is a mapping from ${C^n}$ into the positive cone of ${R^k}$ which satisfies the usual axioms of a pseudonorm (norm). The vector space ${R^k}$ of the $k$-tupies of real numbers is partially ordered componentwise. Vectorial norms have been introduced by Kantorovitch. Recently they have been studied by Robert and Stoer. In the present paper different properties of vectorial pseudonorms are investigated. They deal mainly with the following topics: regularity of pseudonorms, the dual of a vectorial norm, inequality between vectorial pseudonorms and the $G$-transform of a vectorial pseudonorm.## References

- Miroslav Fiedler and Vlastimil Pták,
*Generalized norms of matrices and the location of the spectrum*, Czechoslovak Math. J.**12(87)**(1962), 558–571 (English, with Russian summary). MR**146667** - A. S. Householder,
*The approximate solution of matrix problems*, J. Assoc. Comput. Mach.**5**(1958), 205–243. MR**128607**, DOI 10.1145/320932.320933
—, - L. Kantorovitch,
*The method of successive approximations for functional equations*, Acta Math.**71**(1939), 63–97. MR**95**, DOI 10.1007/BF02547750 - L. V. Kantorovič, B. Z. Vulih, and A. G. Pinsker,
*Funkcional′nyĭ analiz v poluuporyadočennyh prostranstvah*, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR**0038006** - L. V. Kantorovič, B. Z. Vulih, and A. G. Pinsker,
*Partially ordered groups and partially ordered linear spaces*, Amer. Math. Soc. Transl. (2)**27**(1963), 51–124. MR**0151532**, DOI 10.1090/trans2/027/08 - A. M. Ostrowski,
*On some metrical properties of operator matrices and matrices partitioned into blocks*, J. Math. Anal. Appl.**2**(1961), 161–209. MR**130561**, DOI 10.1016/0022-247X(61)90030-0 - A. M. Ostrowski,
*Iterative solution of linear systems of functional equations*, J. Math. Anal. Appl.**2**(1961), 351–369. MR**128634**, DOI 10.1016/0022-247X(61)90016-6 - F. Robert,
*Normes vectorielles de vecteurs et de matrices*, Rev. Française Traitement Information Chiffres**7**(1964), 261–299 (French). MR**205433**
—, - F. Robert,
*Recherche d’une $M$-matrice parmi les minorantes d’un opérateur linéaire*, Numer. Math.**9**(1966), 189–199 (French). MR**208821**, DOI 10.1007/BF02162083 - Josef Stoer,
*Lower bounds of matrices*, Numer. Math.**12**(1968), 146–158. MR**237085**, DOI 10.1007/BF02173409

*The theory of matrices in numerical analysis*, Blaisdell, Waltham, Mass., 1964. MR

**30**#5475.

*Sur les normes vectorielles régulières sur un espace vectoriel de dimension finie*, C. R. Acad. Sci. Paris

**261**(1965), 5173-5176. MR

**33**#543.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**28**(1971), 18-24 - MSC: Primary 46.10; Secondary 15.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0271702-7
- MathSciNet review: 0271702