ON AN INTEGRAL FORMULA OF
GAUSS-BONNET-GROTEMeyer

BANG-YEN CHEN

Abstract. Let $e(p)$ and $G(p)$ be the unit outer normal and the
Gauss-Kronecker curvature of an oriented closed even-dimensional
hypersurface M of dimension n in E^{n+1}. Then for a fixed
unit vector c in E^{n+1}, we have

\[\int_M (c\cdot e)^mGdV = c_{n+m}\chi(M)/c_m, \quad \text{for } m = 0, 2, 4, \cdots, \]
\[= 0, \quad \text{for } m = 1, 3, 5, \cdots, \]

where $c\cdot e$ denotes the inner product of c and e, c_m the area of m-
dimensional unit sphere, and $\chi(M)$ the Euler characteristic of M.

Let M be an orientable closed hypersurface imbedded in a eu-
clidean space E^{n+1} of dimension $n+1 \geq 3$. Let $x(p)$ be the position
vector of a point p with respect to a fixed point 0 in E^{n+1}, and $e(p)$,
$G(p)$ and dV the unit outer normal, the Gauss-Kronecker curvature
at p, and the volume element of M in E^{n+1}, respectively. The main
results of this paper are the following:

Theorem 1. Let M be an oriented closed hypersurface of dimension n
imbedded in euclidean space E^{n+1} of dimension $n+1 \geq 3$. Then we have

\[m \int_M (x\cdot e)^{m-1}xGdV = (n + m) \int_M (x\cdot e)^m eGdV, \]
\[m = 0, 1, 2, 3, \cdots. \]

Theorem 2. Under the same hypothesis of Theorem 1, if the dimension
of M is even, then for a fixed unit vector c in E^{n+1}, we have

\[\int_M (c\cdot e)^mGdV = c_{n+m}\chi(M)/c_m, \quad \text{for } m = 0, 2, 4, \cdots, \]
\[= 0, \quad \text{for } m = 1, 3, 5, \cdots. \]

Remark. If $m = 0$, then formula (3) is the well-known Gauss-
Bonnet formula, and if $m = 2$ and $n = 2$, then formula (3) was proved
1. Preliminaries. Let M be an oriented (differentiable) manifold of dimension n, and let $x : M \to \mathbb{E}^{n+1}$ be a hypersurface. Let $e(p)$, $p \in M$, be the unit outer normal at $x(p)$. We consider the orthonormal frames e_1, \ldots, e_n in the tangent hyperplane at $x(p)$, such that the determinant $(e_1, \ldots, e_n, e) = +1$. The space of all e_1, \ldots, e_n can be identified with the principal fibre bundle B of M relative to the induced metric $dx \cdot dx$ (for the details, see Chern [2]). We have

\[dx = \omega_1 e_1 + \cdots + \omega_n e_n, \quad de = \theta_1 e_1 + \cdots + \theta_n e_n, \]

so that $\omega_i, \theta_i, 1 \leq i \leq n$, are linear differential forms in B. Since

\[e \cdot dx = 0, \]

we get, by exterior differentiation,

\[de \wedge dx = 0. \]

The left-hand side in (6) is the exterior product of two vector-valued linear differential forms; vectors are multiplied in the sense of scalar products in \mathbb{E}^{n+1}. In view of (4), equation (6) can be written

\[\sum_i \omega_i \wedge \theta_i = 0. \]

Since ω_i are linear independent, we can put, in view of (7),

\[\theta_i = \sum A_{ij} \omega_j, \quad A_{ij} = A_{ji}, \quad 1 \leq i, j \leq n. \]

The Gauss-Kronecker curvature G is given by

\[G = \det(A_{ij}). \]

Since e_1, \ldots, e_n is an orthonormal frame, we know that the volume element $dV = \omega_1 \wedge \cdots \wedge \omega_n$. Hence, by (8) and (9), we have

\[\theta_1 \wedge \cdots \wedge \theta_n = G dV. \]

For simplicity, let $[\ldots, \ldots]$ (n terms) denote the combining operation of the vector product of \mathbb{E}^{n+1} with the exterior product. From (10), we have

\[(n \text{ times}) \]

\[[de, \ldots, de] = (n! GdV)e. \]

2. Proof of Theorem 1. Put

\[\delta = \sum_i (-1)^{i-1} \theta_1 \wedge \cdots \wedge \theta_i \wedge \cdots \wedge \theta_n e_i, \]

where "\text{\textasciicircum}" denotes the omitted term. Then, from (4), we have
(n - 1 times)\[de, \ldots, de, e\] = [\sum \theta_i e_i, \ldots, \sum \theta_i e_i, e]

(13) = (n - 1)! \sum \theta_1 \wedge \ldots \wedge \theta_i \wedge \ldots \wedge \theta_n [e_1, \ldots, e_i, \ldots, e_n, e]

= (n - 1)! \sum (-1)^{n-i-1} \theta_1 \wedge \ldots \wedge \theta_i \wedge \ldots \wedge \theta_n e_i

= (n - 1)!(-1)^n \delta.

From (11) and (12), we get

(n times)

(14) \[d\delta = - [de, \ldots, de]/(n - 1)!] = -(nGdV)e.

By (4), (12) and (14), we have

\[d((x \cdot e)^m \delta) = m(x \cdot e)^{m-1}(x \cdot de) \wedge \delta + (x \cdot e)^m d\delta\]

(15) = m(x \cdot e)^{m-1} \sum (x \cdot e) \theta_1 e_1 \wedge \ldots \wedge \theta_n e_n + (x \cdot e)^m d\delta

= m(x \cdot e)^{m-1} xGdV - (n + m)(x \cdot e)^m eGdV.

Integrating both sides of (15) over \(M\) and applying Stokes' theorem, we get (2). This completes the proof of the theorem.

3. Proof of Theorem 2. Let \(c\) be a unit vector in \(E^{n+1}\). Taking the scalar product of \(c\) with both sides of (2), we get

(A0) \[m \int_M (x \cdot e)^{m-1}(x \cdot c)GdV = (n + m) \int_M (x \cdot e)^m(c \cdot e)GdV.\]

We make the translation \(x \rightarrow x + c\) of \(M\). Then, by (A0), we get

\[m \int_M \sum_{i=1}^{m-1} \binom{m-1}{i}(x \cdot e)^i(c \cdot e)^{m-i-1}((x \cdot c) + 1)GdV\]

(A0') = (n + m) \int_M \sum_{i=0}^{m} \binom{m}{i}(x \cdot e)^i(c \cdot e)^{m-i+1}GdV.

(A0') - (A0) gives

\[m \int_M \sum_{i=0}^{m-2} \binom{m-1}{i}(x \cdot e)^i(x \cdot c)(c \cdot e)^{m-i-1}GdV\]

(A1) + \(m \int_M \sum_{i=1}^{m-1} \binom{m-1}{i}(x \cdot e)^i(c \cdot e)^{m-i-1}GdV\]

= (n + m) \int_M \sum_{i=0}^{m} \binom{m}{i}(x \cdot e)^i(c \cdot e)^{m-i+1}GdV.

Again we make the translation \(x \rightarrow x + c\) of \(M\) into (A1) and then subtract from (A1), we get
Continuing this process k times ($k = 1, 2, \ldots, m$), we get

$$m \int_M \sum_{i_1=0}^{m-2} \binom{m-1}{i_1} \sum_{i_2=0}^{i_1-1} \binom{i_1}{i_2} (x \cdot e)^{i_2}(x \cdot c)(c \cdot e)^{m-i_2-1}GdV$$

$$+ m \int_M \left[\sum_{i_1=0}^{m-2} \binom{m-1}{i_1} \sum_{i_2=0}^{i_1} \binom{i_1}{i_2} + \sum_{i_1=0}^{m-1} \binom{m-1}{i_1} \sum_{i_2=0}^{i_1} \binom{i_1}{i_2} \right]$$

$$(A_k)$$

$$\cdot (x \cdot e)^{i_2}(x \cdot e)(c \cdot e)^{m-i_2-1}GdV$$

$$= (n + m) \int_M \sum_{i_1=0}^{m-1} \binom{m-1}{i_1} \sum_{i_2=0}^{i_1} \binom{i_1}{i_2} (x \cdot e)^{i_2}(x \cdot e)(c \cdot e)^{m-i_2+1}GdV.$$
Hence, we get

\[(17) \quad \int_M (c \cdot e)^m GdV = \frac{m - 1}{n + m - 1} \int_M (c \cdot e)^{m-2} GdV.\]

By the assumption, \(n\) is even. Hence if \(m\) is a positive even integer, then by (17), the Gauss-Bonnet formula and the fact

\[(18) \quad c_N = 2[\Gamma(\frac{1}{2})]^{N+1}/\Gamma(\frac{1}{2}(N + 1)),\]

we get

\[(19) \quad \int_M (c \cdot e)^m GdV = \frac{(m - 1)(m - 3) \cdots 1}{(n + m - 1)(n + m - 3) \cdots (n + 1)} \int_M GdV = c_{n+m}(M)/c_m.\]

Moreover, by (2), we get

\[(20) \quad \int_M e GdV = 0.\]

Taking the inner product of \(c\) with (20), we get

\[(21) \quad \int_M (c \cdot e) GdV = 0.\]

Hence, in view of (16) and (21), we find that

\[(22) \quad \int_M (c \cdot e)^m GdV = 0, \quad \text{for all } m = 1, 3, 5, \cdots.\]

Therefore, by (19), (22) and the Gauss-Bonnet formula, we get formula (3). This completes the proof of the theorem.

The author would like to express his hearty thanks to Professor T. Nagano for valuable conversations about this paper.

REFERENCES

UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823