On an integral formula of Gauss-Bonnet-Grotemeyer
HTML articles powered by AMS MathViewer
- by Bang-yen Chen PDF
- Proc. Amer. Math. Soc. 28 (1971), 208-212 Request permission
Abstract:
Let $e(p)$ and $G(p)$ be the unit outer normal and the Gauss-Kronecker curvature of an oriented closed even-dimensional hypersurface $M$ of dimension $n$ in ${E^{n + 1}}$. Then for a fixed unit vector $c$ in ${E^{n + 1}}$, we have \[ (1)\qquad \begin {array}{*{20}{c}} {\int _M^{} {{{({\text {c}}\cdot {\text {e)}}}^m}GdV = {c_{n + m}}\chi (M)/{c_{m,}}} } & {{\text {for}}\;m = 0,2,4, \cdots ,} \\ { = 0,} & {{\text {for}}\;m = 1,3,5, \cdots ,} \\ \end {array} \] where ${\text {c}} \cdot {\text {e}}$ denotes the inner product of $c$ and $e$ the area of $m$-dimensional unit sphere, and $\chi (M)$ the Euler characteristic of $M$.References
- Bang-yen Chen, On the total curvature of immersed manifolds. I. An inequality of Fenchel-Borsuk-Willmore, Amer. J. Math. 93 (1971), 148–162. MR 278240, DOI 10.2307/2373454
- Shiing-shen Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, J. Math. Mech. 8 (1959), 947–955. MR 0114170, DOI 10.1512/iumj.1959.8.58060
- K. P. Grotemeyer, Über das Normalenbündel differenzierbarer Mannigfaltigkeiten, Ann. Acad. Sci. Fenn. Ser. A I No. 336/15 (1963), 12 (German). MR 0163265
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 208-212
- MSC: Primary 53.72
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273541-X
- MathSciNet review: 0273541