A fixed point theorem for manifolds
HTML articles powered by AMS MathViewer
- by Jan W. Jaworowski PDF
- Proc. Amer. Math. Soc. 28 (1971), 275-278 Request permission
Abstract:
A Lefschetz type fixed point theorem is proved extending a recent theorem by Robert F. Brown. It deals with compact maps of the form $f:(M - U,X) \to (M,M - U)$, where $M$ is an $n$-manifold, $X$ is an $(n - 2)$-connected ANR which is closed in $M$ and $U$ is an unbounded component of $M - U$. The map $f$ defines maps $u:M - U \to M - U$ and $v:M \to M$; the Lefschetz numbers of $u$ and $v$ are defined and are shown to be equal; and if this number is nonzero then $f$ has a fixed point.References
- R. H. Bing, Retractions onto $\textrm {ANRโs}$, Proc. Amer. Math. Soc. 21 (1969), 618โ620. MR 239583, DOI 10.1090/S0002-9939-1969-0239583-6
- Robert F. Brown, A fixed point theorem for open $Q$-acyclic $n$-manifolds, Proc. Amer. Math. Soc. 21 (1969), 621โ622. MR 239584, DOI 10.1090/S0002-9939-1969-0239584-8 A. Granas, The Hopf-Lefschetz fixed point theorem for non-compact ANR-s, Proc. Sympos. on Infinite Dimensional Topology, Baton Rouge, Louisiana, 1967.
- Olof Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat. 2 (1952), 315โ360. MR 50875, DOI 10.1007/BF02591501
- David Henderson and G. R. Livesay, Another generalization of Brouwerโs fixed point theorem, Proc. Amer. Math. Soc. 19 (1968), 176โ177. MR 219051, DOI 10.1090/S0002-9939-1968-0219051-7
- J. W. Jaworowski and M. J. Powers, $\Lambda$-spaces and fixed point theorems, Fund. Math. 64 (1969), 157โ162. MR 242142, DOI 10.4064/fm-64-2-157-162
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 275-278
- MSC: Primary 55.36; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273604-9
- MathSciNet review: 0273604