## A fixed point theorem for manifolds

HTML articles powered by AMS MathViewer

- by Jan W. Jaworowski PDF
- Proc. Amer. Math. Soc.
**28**(1971), 275-278 Request permission

## Abstract:

A Lefschetz type fixed point theorem is proved extending a recent theorem by Robert F. Brown. It deals with compact maps of the form $f:(M - U,X) \to (M,M - U)$, where $M$ is an $n$-manifold, $X$ is an $(n - 2)$-connected ANR which is closed in $M$ and $U$ is an unbounded component of $M - U$. The map $f$ defines maps $u:M - U \to M - U$ and $v:M \to M$; the Lefschetz numbers of $u$ and $v$ are defined and are shown to be equal; and if this number is nonzero then $f$ has a fixed point.## References

- R. H. Bing,
*Retractions onto $\textrm {ANRโs}$*, Proc. Amer. Math. Soc.**21**(1969), 618โ620. MR**239583**, DOI 10.1090/S0002-9939-1969-0239583-6 - Robert F. Brown,
*A fixed point theorem for open $Q$-acyclic $n$-manifolds*, Proc. Amer. Math. Soc.**21**(1969), 621โ622. MR**239584**, DOI 10.1090/S0002-9939-1969-0239584-8
A. Granas, - Olof Hanner,
*Retraction and extension of mappings of metric and non-metric spaces*, Ark. Mat.**2**(1952), 315โ360. MR**50875**, DOI 10.1007/BF02591501 - David Henderson and G. R. Livesay,
*Another generalization of Brouwerโs fixed point theorem*, Proc. Amer. Math. Soc.**19**(1968), 176โ177. MR**219051**, DOI 10.1090/S0002-9939-1968-0219051-7 - J. W. Jaworowski and M. J. Powers,
*$\Lambda$-spaces and fixed point theorems*, Fund. Math.**64**(1969), 157โ162. MR**242142**, DOI 10.4064/fm-64-2-157-162

*The Hopf-Lefschetz fixed point theorem for non-compact*ANR-s, Proc. Sympos. on Infinite Dimensional Topology, Baton Rouge, Louisiana, 1967.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**28**(1971), 275-278 - MSC: Primary 55.36; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273604-9
- MathSciNet review: 0273604