Arcs in hyperspaces which are not compact
HTML articles powered by AMS MathViewer
- by L. E. Ward
- Proc. Amer. Math. Soc. 28 (1971), 254-258
- DOI: https://doi.org/10.1090/S0002-9939-1971-0275376-0
- PDF | Request permission
Abstract:
It has been known for many years that if $X$ is a metrizable continuum then ${2^X}$ (the space of closed subsets of $X$) and $C(X)$ (the subspace of connected members of ${2^X}$) are arcwise connected. These results are due to Borsuk and Mazurkiewicz [l] and J. L. Kelley [2], respectively. Quite recently M. M. McWaters [6] extended these theorems to the case of continua which are not necessarily metrizable, using Koch’s arc theorem for partially ordered spaces [3], [8]. In this note we prove these results for certain noncompact spaces by means of a simple generalization of Koch’s arc theorem.References
- K. Borsuk and S. Mazurkiewicz, Sur l’hyperspace d’un continu, C. R. Soc. Sci. Varsovie 24 (1931), 149-152.
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723–728. MR 108553
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- M. M. McWaters, Arcs, semigroups, and hyperspaces, Canadian J. Math. 20 (1968), 1207–1210. MR 231359, DOI 10.4153/CJM-1968-115-3
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- L. E. Ward Jr., Concerning Koch’s theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347–355. MR 181981
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 254-258
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9939-1971-0275376-0
- MathSciNet review: 0275376