A topological characterization of the dilation in $E^{n}$
HTML articles powered by AMS MathViewer
- by L. S. Husch PDF
- Proc. Amer. Math. Soc. 28 (1971), 234-236 Request permission
Abstract:
A topological characterization is given to determine whether a homeomorphism of Euclidean $n$-space, $n \ne 4,5$, is topologically equivalent to the dilation $x \to \frac {1}{2}x$.References
- E. H. Connell, A topological $H$-cobordism theorem for $n\geq 5$, Illinois J. Math. 11 (1967), 300–309. MR 212808, DOI 10.1215/ijm/1256054669
- Graham. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248. MR 2137, DOI 10.1112/plms/s2-46.1.231
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161, DOI 10.1017/CBO9780511569289
- Tatsuo Homma and Shin’ichi Kinoshita, On a topological characterization of the dilatation in $E^3$, Osaka Math. J. 6 (1954), 135–143. MR 63671
- W.-c. Hsiang and J. L. Shaneson, Fake tori, the annulus conjecture, and the conjectures of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687–691. MR 270378, DOI 10.1073/pnas.62.3.687 B. v. Kerékjártó, Topologische Charakterisierung der linearen Abbildungen, Acta Litt. Acad. Sci. Szeged. 6 (1934), 235-262.
- S. Kinoshita, On quasi translations in 3-space, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 223–226. MR 0139685
- S. Kinoshita, Notes on covering transformation groups, Proc. Amer. Math. Soc. 19 (1968), 421–424. MR 222871, DOI 10.1090/S0002-9939-1968-0222871-6
- R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742–749. MR 242166, DOI 10.1090/S0002-9904-1969-12271-8
- L. C. Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970), 1–48. MR 287564, DOI 10.1007/BF02567315
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 234-236
- MSC: Primary 57.47
- DOI: https://doi.org/10.1090/S0002-9939-1971-0283821-X
- MathSciNet review: 0283821