DIMENSION-THEORETIC PROPERTIES
OF COMPLETIONS

B. R. WENNER

Abstract. In this paper we extend some previous work from situations involving countable collections of subsets to those concerning locally finite collections. An example of the results obtained here is a theorem which asserts that corresponding to any locally finite collection of finite-dimensional closed subsets of a metric space $X$ there exists a completion of $X$ in which taking the closure of any member of the given collection does not raise dimension. The basic technique employed in each of the proofs is similar; a topologically equivalent metric is introduced (one which is strongly dependent upon the given locally finite collection), and the desired completion is then taken with respect to this new metric.

The author has previously shown [4] that for every countable collection $\{X_i\}$ of finite-dimensional closed subsets of a metric space $X$, there exists a completion of $X$ in which the closure of each $X_i$ has the same dimension as $X_i$ (by the term completion of $X$ we mean a complete metric space in which $X$ can be topologically embedded as a dense subset; the word dimension will denote the covering dimension of Lebesgue, cf. [2]). One might ask whether an analogous result would hold in the case of a locally finite, rather than a countable, collection of subsets; the answer to this question is yes, as we shall prove in the following.

Theorem 1. Let $\{F_\lambda; \lambda \in \Lambda\}$ be a locally finite collection of finite-dimensional closed subsets of a metric space $X$. Then there exists a completion $X^*$ of $X$ such that

$$\dim(\text{cl}_{X^*} F_\lambda) = \dim F_\lambda \quad \text{for all } \lambda \in \Lambda.$$ 

Moreover, if $X$ is separable then $X^*$ is a metric compactification of $X$.

Theorem 1 will follow from the following more general theorem:

Theorem 2. Let $X$ be a (respectively, separable) metric space, $Y$ a complete (resp., compact) metric space, $\{F_\lambda; \lambda \in \Lambda\}$ a closure-preserving collection of finite-dimensional closed subsets of $X$, and
\{ f_i : i = 1, 2, \cdots \} \text{ a sequence of continuous mappings from } X \text{ into } Y. 

Then there exists a completion (resp., metric compactification) \( X^* \) of 
\( X \) to which each \( f_i \) can be continuously extended and such that 
\[
\dim(\text{chr} \times F_\lambda) = \dim F_\lambda \quad \text{for each } \lambda \in \Lambda .
\]

**Proof.** For each \( k = 0, 1, 2, \cdots \), we define 
\[
X_k = \bigcup \{ F_\lambda : \lambda \in \Lambda \text{ and } \dim F_\lambda = k \}.
\]
By hypothesis, each \( F_\lambda \) is a subset of some \( X_k \), and each \( X_k \) is closed; 
also, by a sum theorem of Nagami [1, Theorem 1], \( \dim X_k = k \) for 
each nonvoid \( X_k \). Let \( X^* \) be a completion (resp., metric compactification) of \( X \) constructed in a previous work [5, Theorem 3 (resp., 
Theorem 4)]. Each \( f_i \) can be continuously extended to \( X^* \); also, for 
any \( \lambda \in \Lambda \), we let \( k(\lambda) = \dim F_\lambda \), in which case 
\[
k(\lambda) = \dim F_\lambda \leq \dim(\text{chr} \times F_\lambda)
\leq \dim(\text{chr} \times X_{k(\lambda)}) = \dim X_{k(\lambda)} = k(\lambda)
\]
by the Monotone Theorem [2, Theorem II.3] and the previously 
cited theorem of the author. This completes this proof.

Similar techniques can be applied to other problems as well. In the 
following we shall introduce an equivalent metric (into a metric 
space) which has certain dimension-theoretic properties on each 
member of a given closure-preserving family of subspaces. The fol-
lowing definitions will be needed.

**Definitions.** Let \((X, \rho)\) be a metric space, and let \( Y \subseteq X \), 
\( \dim Y = n \), and \( \rho_Y \) be the induced metric on \( Y \). Define \( S_\alpha(x \mid Y) = \{ y \in Y : \rho_Y(x, y) < \alpha \} \) for any \( x \in Y \) and any \( \alpha > 0 \).

We say that \( \rho \) has Property A on \( Y \) if and only if there exists \( \delta > 0 \) 
such that for every positive \( \epsilon < \delta \) and every \( x \in Y \), 
\[\rho_Y(S_{\epsilon/\delta}(x \mid Y), y_i) < \epsilon \quad (i = 1, \cdots, n + 2)\]
imply 
\[\rho_Y(y_i, y_j) < \epsilon \quad \text{for some } i, j \text{ with } i \neq j.\]

We say \( \rho \) is dimension-lowering on \( Y \) if and only if for every \( \epsilon > 0 \) 
and every \( x \in X \), \( \dim[Y \cap B(S_\epsilon(x))] < n \).

We say \( \rho \) is strongly dimension-lowering on \( Y \) if and only if for 
every \( \epsilon > 0 \) and every subset \( D \) of \( X \), \( \dim[Y \cap B(S_\epsilon(D))] < n \).

**Theorem 3.** Let \( X \) be a (resp., separable) metric space with bounded 
(resp., totally bounded) metric \( d \), and \( \{ F_\lambda : \lambda \in \Lambda \} \) be a closure-preserving 
collection of nonvoid finite-dimensional closed subsets of \( X \). Then there
exists a topologically equivalent (resp., totally bounded) metric \( p \) for \( X \) such that

(i) \( p \) has Property A on each \( F_\lambda \),
(ii) \( p \) is dimension-lowering on each \( F_\lambda \),
(iii) for all \( \varepsilon > 0 \), \( \{ S_\varepsilon (x) : x \in X \} \) is closure-preserving (resp., finite), and
(iv) \( d(x, y) \leq p(x, y) \leq d(X) \) for all \( x, y \in X \).

Proof. For each \( k = 0, 1, 2, \ldots \), we define

\[ X_k = \bigcup \{ F_\lambda : \lambda \in \Lambda \text{ and } \dim F_\lambda = k \} \]

As in the proof of Theorem 2, each nonvoid \( X_k \) is closed and \( k \)-dimensional, so by an earlier theorem of the author [5, Theorem 1 (resp., Theorem 2)] we can introduce an equivalent metric \( p \) which satisfies (iii) and (iv) as well as

(i') \( p \) has Property A on each \( X_k \), and
(ii') \( p \) is a dimension-lowering on each nonvoid \( X_k \).

Now for any \( \lambda \in \Lambda \) we let \( k(\lambda) = \dim F_\lambda \). Since

\[ \dim X_{k(\lambda)} = k(\lambda) = \dim F_\lambda, \]

it is easy to see that conditions (i') and (ii') imply (i) and (ii), respectively, and the theorem follows.

Since any metric can be replaced by a topologically equivalent bounded metric (a totally bounded metric in the separable case), Theorem 3 can be restated as follows:

**Theorem 4.** If, in Theorem 3, \( X \) is any (resp., separable) metric space, then there exists a topologically equivalent (resp., totally bounded) metric \( p \) for \( X \) which satisfies conditions (i), (ii), and (iii).

We close with an application of Theorem 4.

**Theorem 5.** Let \( \mathcal{F} \) be a closure-preserving collection of nonvoid finite-dimensional closed subsets of a (resp., separable) metric space \( X \). Then there exists a topologically equivalent (resp., totally bounded) metric for \( X \) which is strongly dimension-lowering on each member of \( \mathcal{F} \).

Proof. We let \( p \) be the metric introduced in Theorem 4, and let \( F \in \mathcal{F} \), \( k = \dim F \), \( D \subseteq X \), and \( \varepsilon > 0 \). To prove that \( F \cap B(S_\varepsilon(D)) \) has dimension \( < k \) we first show that it is covered by the closure-preserving collection \( \mathcal{S} = \{ F \cap B(S_\varepsilon(D)) \cap B(S_\varepsilon(p)) : p \in D \} \). To see that \( \mathcal{S} \) is a cover, we note that
\[ F \cap B(S_\ast(D)) = F \cap B(S_\ast(D)) \cap \left( \bigcup_{p \in D} S_\ast(p) - \bigcup_{p \in D} S_\ast(p) \right) \]
\[ = F \cap B(S_\ast(D)) \cap \left( \bigcup_{p \in D} S_\ast(p) - \bigcup_{p \in D} S_\ast(p) \right) \]
(by (iii) of Theorem 4)
\[ \subseteq F \cap B(S_\ast(D)) \cap \bigcup_{p \in D} (S_\ast(p) - S_\ast(p)) \]
\[ = F \cap B(S_\ast(D)) \cap \bigcup_{p \in D} B(S_\ast(p)) \]
\[ = \bigcup_{p \in D} (F \cap B(S_\ast(D)) \cap B(S_\ast(p))). \]

Also, for any \( E \subseteq D \),
\[ \bigcup_{p \in E} (F \cap B(S_\ast(D)) \cap B(S_\ast(p))) \]
\[ = F \cap \bigcup_{p \in E} ((S_\ast(p) - S_\ast(p)) \cap B(S_\ast(D))) \]
\[ = F \cap \bigcup_{p \in E} ((S_\ast(p) \cap (X - S_\ast(p)) \cap B(S_\ast(D))) \]
\[ = F \cap \bigcup_{p \in E} ((S_\ast(p) \cap B(S_\ast(D))) \]
(since \( B(S_\ast(D)) \subseteq X - S_\ast(p) \) for all \( p \in E \))
\[ = F \cap B(S_\ast(D)) \cap \bigcup_{p \in E} S_\ast(p), \]
which is closed by condition (iii) of Theorem 4, so \( \mathcal{S} \) is closure-preserving. By (ii) of Theorem 4,
\[ \dim(F \cap B(S_\ast(p))) \leq k - 1 \quad \text{for each } p \in D, \]
so by the Monotone Theorem each member of \( \mathcal{S} \) has dimension \( \leq k - 1 \). Since \( \mathcal{S} \) is a closure-preserving closed cover consisting of sets of dimension \( \leq k - 1 \), we again apply the Sum Theorem of Nagami to infer that
\[ \dim(F \cap B(S_\ast(D))) \leq k - 1. \]

References


University of Missouri-Kansas City, Kansas City, Missouri 64110