KLEIN BOTTLES IN CIRCLE BUNDLES

JOHN W. WOOD

ABSTRACT. We prove that the Klein bottle embeds in the total space E of an orientable S^1-bundle over an orientable 2-manifold M if and only if $M = S^2$ and $E = S^1 \times S^2$ or the lens space $L(4, 1)$.

In this note we apply results of [1] to generalize a result given there concerning the embedding of the Klein bottle.

PROPOSITION. The Klein bottle embeds in the total space E of an orientable S^1-bundle over an orientable 2-manifold M if and only if $M = S^2$ and $E = S^1 \times S^2$ or the lens space $L(4, 1)$.

To show $M = S^2$ we use the following result of [1]:

THEOREM [1, §4.1]. Let $i: K \to E$ be an embedding of a nonorientable $(n-1)$-manifold K in an orientable n-manifold E. Suppose that $a \in \pi_1(K)$ reverses orientation. Then for $\beta \in \pi_1(E)$, $\beta^{-1} i_*(a) \beta \in i_*(\pi_1(K))$ implies $\beta \in i_*(\pi_1(K))$.

Assume $M \neq S^2$, so $\pi_2(M) = 0$. In the exact sequence of the fibration

$$\cdots \to 0 \to \pi_1(S^1) \to \pi_1(E) \to \pi_1(M) \to 0$$

the generator of $\pi_1(S^1)$ is mapped to an element g in the center of $\pi_1(E)$. (Since E is trivial over the 1-skeleton of M, the inverse image of any circle in M is a torus in E. Hence g commutes with a basis for $\pi_1(E)$.) By the theorem g is in the image of i_*. Let $\pi_1(K) = \{\alpha, \beta: \alpha \beta \alpha^{-1} = \beta^{-1}\}$; α is the orientation reversing element. Then $g = i_*(\alpha^j \beta^k)$ for some integers j, k. Since $\alpha \beta \alpha^{-1} = \beta^{-k}$, we have

$$g i_*(\alpha^{-j} \beta^{k}) g i_*(\alpha^{-j} \beta^{k}) = i_*(\alpha^j \beta^k \alpha^{-j} \beta^k \alpha^{-j} \beta^k) = 1.$$

Therefore $g^2 = i_*(\alpha^{2j})$. $p_1(g) = 0$ and $\pi_1(M)$ is torsion free, so $p_1i_*(\alpha) = 0$. Therefore $i_*(\alpha) = g^n$ and is in the center of $\pi_1(E)$. But then by the theorem i_* is onto. Thus $p_1i_*(\beta)$ generates $\pi_1(M)$ which contradicts $M \neq S^2$.

To complete the proof of the proposition recall that the total space E of an orientable S^1-bundle over S^2 is the lens space $L(k, 1)$ or $S^1 \times S^2$ (the case $k = 0$). By [1, §6] a nonorientable surface of genus g embeds

Received by the editors June 11, 1970.

AMS 1969 subject classifications. Primary 5720, 5570.

Key words and phrases. Embedding, Klein bottle, S^1-bundle over 2-manifold. lens space.

Copyright © 1971, Amerian Mathematical Society

607
in $L(k, 1)$ if and only if k is even, $g \equiv k/2 \pmod{2}$, and $g \geq k/2$. Thus the Klein bottle, which has genus 2, embeds only in $L(4, 1)$ and $S^1 \times S^2$.

If $S^1 \times S^2$ is pictured as a family of 2-spheres parameterized by θ, $0 \leq \theta < 2\pi$, then the surface swept out by a meridian rotated about the poles by $\theta/2$ is a Klein bottle.

In the x, y-plane let S be the square with vertices at $(\pm 1, 0)$ and $(0, \pm 1)$. $L(4, 1)$ is obtained from the suspension from $(0, 0, 1)$ of S in \mathbb{R}^3 by identifying certain points of the boundary, cf. [2, p. 223]. The surface $z = xy$ gives an embedding of the Klein bottle.

REFERENCES

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540