Embedding the hyperspaces of circle-like plane continua
HTML articles powered by AMS MathViewer
- by James T. Rogers
- Proc. Amer. Math. Soc. 29 (1971), 165-168
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273578-0
- PDF | Request permission
Abstract:
The author shows that the hyperspace of continua of a circle-like plane continuum is embeddable in ${E^3}$. The restriction to plane continua is necessary, for the hyperspace of a solenoid is homeomorphic to the cone over that solenoid and hence not embeddable in ${E^3}$.References
- Ralph Bennett and W. R. R. Transue, On embedding cones over circularly chainable continua, Proc. Amer. Math. Soc. 21 (1969), 275–276. MR 238271, DOI 10.1090/S0002-9939-1969-0238271-X
- R. H. Bing and R. J. Bean (eds.), Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, No. 60, Princeton University Press, Princeton, N.J., 1966. MR 0202100
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465–483. MR 87090 George W. Henderson, On the hyperspace of subcontinuum of an arc-like continuum, Notices Amer. Math. Soc. 17 (1970), 268. Abstract #672-644.
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- Michael C. McCord, Embedding ${\cal P}$-like compacta in manifolds, Canadian J. Math. 19 (1967), 321–332. MR 212804, DOI 10.4153/CJM-1967-023-8 J. Milnor, Differential topology, Princeton University, Princeton, N. J., 1958, (mimeographed).
- John W. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, Va., 1965. Based on notes by David W. Weaver. MR 0226651
- Tibor Radó, On continuous mappings of Peano spaces, Trans. Amer. Math. Soc. 58 (1945), 420–454. MR 14419, DOI 10.1090/S0002-9947-1945-0014419-5
- Jack Segal, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc. 10 (1959), 706–709. MR 108780, DOI 10.1090/S0002-9939-1959-0108780-6
- William R. R. Transue, On the hyperspace of subcontinua of the pseudoarc, Proc. Amer. Math. Soc. 18 (1967), 1074–1075. MR 222851, DOI 10.1090/S0002-9939-1967-0222851-X
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 165-168
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9939-1971-0273578-0
- MathSciNet review: 0273578