A CLASS OF EMBEDDINGS OF S^{n-1} AND B^n IN R^n

J. C. CANTRELL, T. M. PRICE AND T. B. RUSHING

Abstract. We show that if D is an n or $(n-1)$-cell in R^n, $n>4$, and E is an $(n-2)$-cell in $Bd D$, with $D-E$ locally flat in R^n and E locally flat in each of $Bd D$ and R^n, then D is locally flat in R^n.

In establishing criteria for detecting local flatness of submanifolds, a central role has been played by the following problem [1], [2].

$\gamma(n, m, k)$: If D is an m-cell in R^n, E is a k-cell in $Bd D$, and if $D-E$ is locally flat in R^n and E is locally flat in both R^n and $Bd D$, then D is locally flat in R^n.

$\gamma(n, n, n-2)$ and $\gamma(n, n-1, n-2)$, $n>3$, are the only unresolved γ-statements, and, for fixed n, these are known to be equivalent [1]. In this paper we show that $\gamma(n, n, n-2)$ is true for $n>4$. Of equal importance is the illustration of the utility of the 1-SS property introduced in [3].

Definition. Let $X \subseteq Y$ be topological spaces. Then $Y-X$ is said to be 1-SS (1-short shrink) at $x \in X$ if for every neighborhood U of x there is a neighborhood $V \subseteq U$ of x such that every loop in $V-X$ which is null-homotopic in $Y-X$ is also null-homotopic in $U-X$.

Theorem 1. Suppose that $S^{n-1} \subseteq S^n$ is an $(n-1)$-sphere and that $D^{n-2} \subseteq S^{n-1}$ is an $(n-2)$-cell. If $S^{n-1} - D^{n-2}$ and D^{n-2} are locally flat in S^n, and D^{n-2} is locally flat in S^{n-1} then $S^n - S^{n-1}$ is 1-LC at each point of S^{n-1}.

Before proving the theorem we will establish the following lemma.

Lemma 1. Let $S^{n-2} \subseteq S^n$ be an $(n-2)$-sphere which is locally flat at a point x. Then, $S^n - S^{n-2}$ is 1-SS at x.

Proof. Let U be any neighborhood of x and let V be a subset of U that is a flattening cell neighborhood for S^{n-2} at x, i.e., $(V, V\cap S^{n-2}) \approx (I^n, I^{n-2})$. Let l be a loop in $V - S$ which is null-homotopic in $S^n - S$. By pushing radially away from x we see that l is homotopic in $V - S$ to a loop l' in $Bd V - S$ which is null-homotopic in $S^n - (\text{Int } V\cup S)$. The proof will be complete if we can show that l' is null-homotopic in...
EMBEDDINGS OF S^{n-1} AND B^n IN R^n 209

Bd $V - \Sigma$. Since we know that l' is null-homotopic in $S^n - (\text{Int } V \cup \Sigma)$, it will suffice to show that the injection

$$\pi_1(\text{Bd } V - \Sigma) \to \pi_1(S^n - (\text{Int } V \cup \Sigma))$$

is a monomorphism. In order to do this consider the following portion of the Mayer-Vietoris sequence

$$\cdots \to H_2(S^n - (\Sigma - \text{Int } V)) \to H_1(\text{Bd } V - \Sigma) \to H_1(S^n - (\text{Int } V \cup \Sigma))$$

By using Alexander duality this sequence becomes

$$\cdots \to 0 \to \mathbb{Z} \to \mathbb{Z} \oplus 0 \to 0 \to \cdots.$$

Hence, the inclusion of $\text{Bd } V - \Sigma$ into $S^n - (\text{Int } V \cup \Sigma)$ induces an isomorphism on first homology. But now any loop l in $\text{Bd } V - \Sigma$ which is null-homotopic in $S^n - (\text{Int } V \cup \Sigma)$ is also null-homologous in $S^n - (\text{Int } V \cup \Sigma)$, consequently null-homologous in $\text{Bd } V - \Sigma$. Since $\pi_1(\text{Bd } V - \Sigma)$ is abelian, it follows that l is null-homotopic in $\text{Bd } V - \Sigma$ and so the injection $\pi_1(\text{Bd } V - \Sigma) \to \pi_1(S^n - (\text{Int } V \cup \Sigma))$ is a monomorphism as desired.

Proof of Theorem 1. Clearly $S^n - \Sigma^{n-1}$ is 1-LC at each point of $\Sigma^{n-1} - D^{n-2}$, since Σ^{n-1} is locally flat at such points. Now suppose $x \in \text{Bd } D^{n-2}$. Let U be any neighborhood of x in S^n and let $V \subset U$ be a flattening neighborhood for D^{n-2} in S^n at x, i.e., $(V, V \cap D^{n-2}) \approx (E^n, E^n_{n-2})$. Without loss of generality, we may assume that $V \cap \Sigma^{n-1} \subset B^{n-1}$ where $B^{n-1} \subset U$ is a flattening open $(n-1)$-cell neighborhood of D^{n-2} in Σ^{n-1} at x. Let $l: \text{Bd } I^2 \to V - \Sigma^{n-1}$ be any loop, and let $f: I^2 \to V - D^{n-2}$ be an extension of l. Clearly, there is a closed $(n-1)$-cell $D_0 \subset B^{n-1} - D^{n-2}$ such that $f(I^2) \cap \Sigma^{n-1} \subset D_0$. Let G denote the closure of the complementary domain of Σ^{n-1} in S^n which does not contain $l(\text{Bd } I^2)$. Let $A = f^{-1}(G)$. Then, by Tietze’s extension theorem $f|A \cap f^{-1}(\Sigma^{n-1})$ can be extended to a map $f': A \to D_0$. Redefine f to be f' on A. By using a collar of D_0 in $\text{Cl}(S^n - G)$ (which exists since D_0 is locally flat), we can “pull in” f to obtain $f*: I^2 \to U - \Sigma^{n-1}$ and so l is null-homotopic in $U - \Sigma^{n-1}$. Hence, $S^n - \Sigma^{n-1}$ is 1-LC at x.

Suppose that $x \in \text{Int } D^{n-2}$. Since D^{n-2} is locally flat in Σ^{n-1}, we may complete D^{n-2} to an $(n-2)$-sphere $\Sigma^{n-2} \subset \Sigma^{n-1}$. Let U be any neighborhood of x in S^n, let $B^{n-1} \subset U$ be a flattening $(n-1)$-cell neighborhood of Σ^{n-2} in Σ^{n-1} at x, and let $U' \subset U$ be a neighborhood of x in S^n such that $U' \cap \Sigma^{n-1} \subset B^{n-1}$. Since $S^n - \Sigma^{n-2}$ is 1-SS at x by the lemma, there is a neighborhood $V \subset U'$ of x such that every loop in $V - \Sigma^{n-2}$ which is null-homotopic in $S^n - \Sigma^{n-2}$ is also null-homotopic in $U' - \Sigma^{n-2}$. Let $l: \text{Bd } I^2 \to V - \Sigma^{n-1}$ be any loop. Since D^{n-2} is flat in
there is a map \(f : I^2 \to S^n - D^{n-2} \) which extends \(l \). Obviously, there is a closed, locally flat \((n-1)\)-cell \(D_0 \subset S^{n-1} - D^{n-2} \) such that \(f(I^2) \cap S^{n-1} \subset D_0 \). By making an application of Tietze’s extension theorem similar to the one in the preceding paragraph, we can obtain \(f_\ast : I^2 \to S^n \) which extends \(l \). But this means that \(l \) is null-homotopic in \(S^n - S^{n-2} \) and so by our choice of \(V \), \(l \) is null-homotopic in \(U' - S^{n-2} \), i.e., there is a map \(g : I^2 \to U - S^{n-2} \) which extends \(l \). Clearly, there are two closed, locally flat \((n-1)\)-cells \(D_+ \) and \(D_- \) in \(S^{n-1} - S^{n-2} \) such that \(g(I^2) \cap S^{n-1} \subset D_+ \cup D_- \). Let \(G \) denote the complementary domain of \(S^{n-1} \) in \(S^n \) which contains \(f(Bd I^2) \). Let \(X \) denote the component of \(g^{-1}(G) \) which contains \(Bd I^2 \) and consider the components of \(I^2 - X \). Let \(A_+ \) be the union of all those components having frontiers whose images are contained in \(D_+ \) and let \(A_- \) be the union of all those components having frontiers whose images are contained in \(D_- \). (By unicoherence these frontiers are connected and so their images are contained in either \(D_+ \) or \(D_- \).) Then, by Tietze’s extension theorem \(g \big|_{A_+ \cap g^{-1}(S^{n-1})} \) can be extended to a map \(g_+: A_+ \to D_+ \) and \(g \big|_{A_- \cap g^{-1}(S^{n-1})} \) can be extended to a map \(g_- : A_- \to D_- \). Redefine \(g \) to be \(g_+ \) on \(A_+ \) and \(g_- \) on \(A_- \). By using a collar of \(D_+ \) and \(D_- \) in \(Cl(G \cup U) \) (which exist since \(D_+ \) and \(D_- \) are locally flat), we can “pull in” \(g \) to obtain \(g_\ast : I^2 \to U - S^{n-1} \) and so \(l \) is null-homotopic in \(U - S^{n-1} \). Hence, \(S^{n-1} \) is 1-LC at \(x \) as desired.

Theorem 2. \(\gamma(n, n, n-2) \) is true.

Proof. Let \(D^n \) and \(E^{n-2} \), \(n > 4 \), be as in the statement of \(\gamma(n, n, n-2) \). It suffices to show that \(Bd D \) is locally flat. By [4], this will be the case if \(Bd D \) can be pointwise approximated by locally flat spheres and \(R^n - Bd D \) is 1-LC at each point of \(Bd D \). The first condition follows from the fact that \(Bd D \) is collared on one side, and the second follows from Theorem 1.

Bibliography

University of Georgia, Athens, Georgia 30601

University of Iowa, Iowa City, Iowa 52240

University of Utah, Salt Lake City, Utah 84112