Every countable-codimensional subspace of a barrelled space is barrelled
HTML articles powered by AMS MathViewer
- by Stephen Saxon and Mark Levin
- Proc. Amer. Math. Soc. 29 (1971), 91-96
- DOI: https://doi.org/10.1090/S0002-9939-1971-0280972-0
- PDF | Request permission
Abstract:
As indicated by the title, the main result of this paper is a straightforward generalization of the following two theorems by J. Dieudonné and by I. Amemiya and Y. Kōmura, respectively: (i) Every finite-codimensional subspace of a barrelled space is barrelled. (ii) Every countable-codimensional subspace of a metrizable barrelled space is barrelled. The result strengthens two theorems by G. Köthe based on (i) and (ii), and provides examples of spaces satisfying the hypothesis of a theorem by S. Saxon.References
- Ichiro Amemiya and Yukio K\B{o}mura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273–277 (German). MR 232182, DOI 10.1007/BF01350719
- N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d’applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1229, Hermann & Cie, Paris, 1955 (French). MR 0077882
- J. Dieudonné, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math. 25 (1952), 50–55 (1953) (French). MR 0056189
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- Gottfried Köthe, Die Bildräume abgeschlossener Operatoren, J. Reine Angew. Math. 232 (1968), 110–111 (German). MR 234298, DOI 10.1515/crll.1968.232.110
- Mark Levin and Stephen Saxon, A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, Proc. Amer. Math. Soc. 29 (1971), 97–102. MR 280973, DOI 10.1090/S0002-9939-1971-0280973-2 S. Saxon, Basis cone base theory, Dissertation, Florida State University, Tallahassee, Fla., 1969 (unpublished).
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 91-96
- MSC: Primary 46.01
- DOI: https://doi.org/10.1090/S0002-9939-1971-0280972-0
- MathSciNet review: 0280972