Irreducible Lie algebras of infinite type
HTML articles powered by AMS MathViewer
- by Robert Lee Wilson
- Proc. Amer. Math. Soc. 29 (1971), 243-249
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277582-8
- PDF | Request permission
Abstract:
Let V be a finite dimensional vector space over an algebraically closed field of characteristic $\ne 2,3,5$. It is shown that if $L \subseteq {\text {gl}}(V)$ is an irreducible Lie algebra of infinite type then either $V = 2r \geqq 4$ and $L = {\text {sp}}(V),\dim V = 2r \geqq 4$ and $L = {\text {csp}}(V)$, or there exists $A \in L$ such that $A \ne 0 = {({\text {ad}}\;A)^2}$. As a corollary we obtain E. Cartan’s classification of the irreducible Lie algebras of infinite type over C.References
- Elie Cartan, Les groupes de transformations continus, infinis, simples, Ann. Sci. École Norm. Sup. (3) 26 (1909), 93–161 (French). MR 1509105
- Victor W. Guillemin, Daniel Quillen, and Shlomo Sternberg, The classification of the irreducible complex algebras of infinite type, J. Analyse Math. 18 (1967), 107–112. MR 217130, DOI 10.1007/BF02798038
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875–907. MR 0168704
- Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. III, J. Math. Mech. 14 (1965), 679–706. MR 0188364
- Bertram Kostant, A characterization of the classical groups, Duke Math. J. 25 (1958), 107–123. MR 95883
- A. I. Kostrikin, Simple Lie $p$-algebras, Trudy Mat. Inst. Steklov. 64 (1961), 79–89 (Russian). MR 0132086
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627
- I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1–114. MR 217822, DOI 10.1007/BF02787690
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 243-249
- MSC: Primary 17.30
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277582-8
- MathSciNet review: 0277582