On continuability of solutions of second order differential equations.
HTML articles powered by AMS MathViewer
- by T. Burton and R. Grimmer
- Proc. Amer. Math. Soc. 29 (1971), 277-283
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277808-0
- PDF | Request permission
Abstract:
An equation (1) $x'' + a(t)f(x) = 0$ together with some generalizations are considered. We give necessary and sufficient conditions in order that (1) have solutions which are not continuable in a certain fashion whenever $a(t)$ becomes negative.References
- L. E. Bobisud, Oscillation of nonlinear second-order equations, Proc. Amer. Math. Soc. 23 (1969), 501โ505. MR 247179, DOI 10.1090/S0002-9939-1969-0247179-5
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- C. V. Coffman and D. F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71 (1967), 385โ392. MR 227494, DOI 10.1007/BF01295129
- Lynn Erbe, Oscillation theorems for second order nonlinear differential equations, Proc. Amer. Math. Soc. 24 (1970), 811โ814. MR 252756, DOI 10.1090/S0002-9939-1970-0252756-X
- Stuart P. Hastings, Boundary value problems in one differential equation with a discontinuity, J. Differential Equations 1 (1965), 346โ369. MR 180723, DOI 10.1016/0022-0396(65)90013-6
- J. W. Heidel, Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation, Pacific J. Math. 32 (1970), 715โ721. MR 259244, DOI 10.2140/pjm.1970.32.715
- I. T. Kiguradze, A note on the oscillation of solutions of the equation $u^{\prime \prime }+a(t)| u| ^{n}\,\textrm {sgn}\,u=0$, ฤasopis Pฤst. Mat. 92 (1967), 343โ350 (Russian, with Czech and German summaries). MR 0221012
- G. G. Legatos and A. G. Kartsatos, Furthur results on oscillation of solutions of second order equations, Math. Japon. 14 (1969), 67โ73. MR 255910
- Paul Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), 439โ441. MR 173050, DOI 10.1016/0022-247X(65)90138-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 277-283
- MSC: Primary 34.40
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277808-0
- MathSciNet review: 0277808