On determination of the optimal factor of a nonnegative matrix-valued function
HTML articles powered by AMS MathViewer
- by Habib Salehi
- Proc. Amer. Math. Soc. 29 (1971), 383-389
- DOI: https://doi.org/10.1090/S0002-9939-1971-0278056-0
- PDF | Request permission
Abstract:
Let $F = [f_{ij}]$, $1 < i$, $j \leqq q$, be a measurable, nonnegative definite $q \times q$ matrix-valued function defined on the unit circle $C$. It is known that when $\mathbfit {F}$ and $\log \det \textbf {F}$ are in $L_1(C)$, $\mathbfit {F}$ admits a factorization of the form $F = \mathbf {\Phi } \mathbf {\Phi }^\ast$, where $\mathbf {\Phi }$ is an optimal, full rank function in $L_2^{0+}(C)$. Under the additional assumption that $\{ (\prod \nolimits _{i = 1}^q f_{ii})/\det F\}$ is in $L_1(C)$, an iterative procedure which yields an infinite series for $\mathbf {\Phi }$ in terms of $\mathbfit {F}$ is given. The optimal function $\mathbf {\Phi }$ plays a significant role in the multivariate prediction theory of stochastic processes. The present work generalizes the results of several authors concerning the determination of the optimal factor $\mathbf {\Phi }$.References
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- P. Masani, The prediction theory of multivariate stochastic processes. III. Unbounded spectral densities, Acta Math. 104 (1960), 141–162. MR 121952, DOI 10.1007/BF02547188
- P. Masani, Recent trends in multivariate prediction theory, Multivariate Analysis (Proc. Internat. Sympos., Dayton, Ohio, 1965) Academic Press, New York, 1966, pp. 351–382. MR 0214228
- Habib Salehi, A factorization algorithm for $q\times q$ matrix-valued functions on the real line $R$, Trans. Amer. Math. Soc. 124 (1966), 468–479. MR 199899, DOI 10.1090/S0002-9947-1966-0199899-0
- N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. II. The linear predictor, Acta Math. 99 (1958), 93–137. MR 97859, DOI 10.1007/BF02392423
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 383-389
- MSC: Primary 46.30; Secondary 47.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0278056-0
- MathSciNet review: 0278056