Perfect matrix methods
HTML articles powered by AMS MathViewer
- by D. J. Fleming and P. G. Jessup
- Proc. Amer. Math. Soc. 29 (1971), 319-324
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279484-X
- PDF | Request permission
Abstract:
Let ${e_i} = ({\delta _{ij}})_{j = 1}^\infty ,\Delta = ({e_i})_{i = 1}^\infty$ and let A be an infinite matrix which maps E into E where E is an FK-space with Schauder basis $\Delta$. Necessary and sufficient conditions in terms of the matrix A are obtained for E to be dense in the summability space ${E_A} = \{ x | {Ax \in E\} }$ and conditions are obtained to guarantee that ${E_A}$ has Schauder basis $\Delta$. Finally it is shown that if weak and strong sequential convergence coincide in E then in ${E_A}$ the series $\sum {_k{x_k}{e_k}}$ converges to x strongly if and only if it converges to x weakly.References
- S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
- H. I. Brown, The summability field of a perfect $l-l$ method of summation, J. Analyse Math. 20 (1967), 281–287. MR 218785, DOI 10.1007/BF02786676
- H. I. Brown and V. F. Cowling, On consistency of $l-l$ methods of summation, Michigan Math. J. 12 (1965), 357–362. MR 184004
- M. S. Ramanujan, On summability methods of type $M$, J. London Math. Soc. 29 (1954), 184–189. MR 60608, DOI 10.1112/jlms/s1-29.2.184
- Albert Wilansky, Functional analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0170186
- Karl Zeller, Abschnittskonvergenz in $FK$-Räumen, Math. Z. 55 (1951), 55–70 (German). MR 47799, DOI 10.1007/BF01212667
- G. Bennett, A representation theorem for summability domains, Proc. London Math. Soc. (3) 24 (1972), 193–203. MR 291685, DOI 10.1112/plms/s3-24.2.193
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 319-324
- MSC: Primary 40.31
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279484-X
- MathSciNet review: 0279484