On functions of bounded boundary rotation
HTML articles powered by AMS MathViewer
- by Ming-chit Liu
- Proc. Amer. Math. Soc. 29 (1971), 345-348
- DOI: https://doi.org/10.1090/S0002-9939-1971-0286993-6
- PDF | Request permission
Abstract:
Let $U = \{ z = r{e^{i\theta }}\left | {r < 1\} } \right .$. For $k \geqq 2$ let ${V_k}$ be the class of normalized analytic functions $f(z)$ such that the boundary rotation of $f(U)$ is at most $k\pi$. Let $A(r)$ be the integral \[ \int _0^{2\pi } {\int _0^r {\left | {f’(\rho {e^{i\theta }})} \right |} } {^2}\rho d\,\rho d\,\theta ,\] $L(r)$ the length of the image of the circle $\left | z \right | = r$ under the mapping $f(z)$. In this paper the author proves that for $z \in U$ if $f(z) \in {V_k}$ then \[ \limsup _{r \to 1} \left ( \sup _{f \in {V_k}} L(r) \right ) \left ( \pi A(r)\log \left ( \frac {1 + r}{1 - r} \right ) \right )^{-1/2} \leqq k. \] This generalizes to arbitrary $k \geqq 2$ the recent result of Nunokawa for the case $k = 2$.References
- K. Löwner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $\left | z \right | < 1$, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Kön. Sächs. Ges. Wiss. Leipzig 69 (1917), 89-106.
- Mamoru Nunokawa, A note on convex and Bazilevič functions, Proc. Amer. Math. Soc. 24 (1970), 332–335. MR 251206, DOI 10.1090/S0002-9939-1970-0251206-7 V. Paatero, Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A 33 (1931), 77 pp.
- M. S. Robertson, Coefficients of functions with bounded boundary rotation, Canadian J. Math. 21 (1969), 1477–1482. MR 255798, DOI 10.4153/CJM-1969-161-2
- M. S. Robertson, Univalent functions $f(z)$ for which $zf^{\prime } (z)$ is spirallike, Michigan Math. J. 16 (1969), 97–101. MR 244471
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 345-348
- MSC: Primary 30.42
- DOI: https://doi.org/10.1090/S0002-9939-1971-0286993-6
- MathSciNet review: 0286993