ON RINGS SATISFYING \([(a, b, c), d] = 0 \)

ARMIN TheDY

Abstract. A simple nonassociative ring, in which the associators commute with all elements, is under mild additional assumptions either associative or commutative. This result cannot be extended to prime rings since a construction of semiprime rings gives counterexamples.

Introduction. Let \(R \) be a nonassociative ring, in which the associators commute with all elements. If \(R \) is simple then we prove under mild additional assumptions that \(R \) is either associative or commutative. This result cannot be extended to prime rings. To prove this we present a construction of semiprime rings giving counterexamples. Our class of rings includes the standard algebras and accessible rings, which were studied by Albert and Kleinfeld and others.

Structure theory. Let \(R \) be a nonassociative ring. We denote the deviation from the commutative law by the commutator \([x, y] := xy - yx\) and the deviation from the associative law by the associator \((x, y, z) := (xy)z - x(yz)\). In the following we study rings \(R \) satisfying the relation

\[
\left[(a, b, c), d\right] = 0 \quad \text{for all } a, b, c, d \in R.
\]

The relation (*) holds in accessible and in standard rings \([4]\). If we put \(V := \{x \mid x \in R, [x, y] = 0 \text{ for all } y \in R\} \), then (*) is equivalent to saying that \(V \) contains all associators. In \([4], [5], [6], [9], [10], [12], [13]\) other generalizations of standard rings are considered. In most rings that were studied until now, \(V \) is a subalgebra of \(R \). Since we need this fact we state

Lemma 1. Let \(R \) be any ring. Then \(V = \{x \mid x \in R, [x, R] = 0\} \) is a subring of \(V \) if \(R \) satisfies one of the following conditions:

(a) \((x, x, y) + (y, x, x) - 2(x, y, x) = 0.\)

(b) \((x, y, z) + (y, z, x) + (z, x, y) = 0, x, y, z \in R.\)

(c) \((x, x, x) = 0 \text{ and } 2y = 0 \text{ only for } y = 0.\)

Proof. The conditions (a), (b), (c) can be rewritten by using commutators respectively as:

Received by the editors August 24, 1970.

AMS 1970 subject classifications. Primary 17A30, 17E05; Secondary 16A12.

Key words and phrases. Nonassociative ring, standard ring, standard algebra, \((y, s)\)-ring, semiprime ring, simple ring.

1 This research was supported in part by NSF-GP-9572.

Copyright © 1971, American Mathematical Society
ON RINGS SATISFYING \{(a, b, c), d) = 0 \}

\((a') \quad [x^2, y] + [[[y, x], x] + [x, xy] + 3x[y, x] = 0. \)

\((b') \quad [xy, z] + [yz, x] + [zx, y] = 0. \)

\((c') \quad [x^2, x] = 0 \) and \(2y = 0 \) implies \(y = 0. \)

From \((b') \) or from the polarizations of \((a') \) or \((c') \) one easily sees that \(V \) is closed under multiplication, hence a subring of \(V \). \(V \) was also used in the proofs of [3]. An easy example shows that \(V \) is not always a subalgebra of \(R \). Clearly flexible rings, being defined by \((x, y, x) = 0 \), satisfy \((a) \). The rings of \((\gamma, \delta)\)-type [7] satisfy \((b) \). In the following we will always assume that \(V \) is a subalgebra.

Lemma 2. If \(V \) is a subalgebra of \(R \) and \(R \) satisfies (*) then the set \(W := \{ v \in V, Rv \subseteq V \} \) is an ideal of \(R \) such that \((x, y, v) \in W \) and \((v, y, x) \in W \) for \(v \in V \) and all \(x, y \in R \).

Proof. From (*) we see that \(W \) is a (two-sided) ideal of \(R \). From the well-known identity

\[a(ab, c, d) + (a, bc, d) - (a, b, cd), \]

which holds in any ring, we get

\[z(x, y, v) = (zx, y, v) - (z, xy, v) + (z, x, yv) - (z, x, y)v \in V \]

since \(V \) is a subalgebra of \(R \) and (*) holds. Similarly we get \(z(v, y, x) = (v, y, x)z \in V \).

Corollary 1. The canonical homomorphism of \(R \) onto \(R/W \) maps \(V \) into the center of \(R/W \).

Proof. Let \(x, y \in R \) and \(v \in V \). We know already \([x, v] = 0, (x, y, v) \in W \) and \((v, y, x) \in W \) from Lemma 2. Therefore also

\[(x, v, y) = (x, y, v) + (v, x, y) - [xy, v] + [x, v]y - x[y, v] \]

\[= (x, y, v) + (v, x, y) \in W. \]

Corollary 2. If \(W = 0 \) then \(V \) equals the center of \(R \).

Proof. By Corollary 1, \(V \) is contained in the center while the other inclusion is trivial.

Corollary 3. \((x, y, z)^3 = (x, x, x) (y, y, y) (z, z, z) \) and \(2(x, y, z)^3 \equiv 0 \) modulo \(W \).

Proof. Since \(V \) is mapped into the center of \(R/W \), we have modulo \(W \), that

\[(x, y, z)^3 = (x, y, z)((x, y, z), y, z) = -(x, y, z)((x, x, y)z, y, z) \]

\[= -(x(x, x, y), y, z)z, y, z) = (x, x, x)(y, y, z)(z, y, z). \]
Now
\[(y, y, z)(z, y, z) = (z, y(y, y, z), z) = -(y, y, y)(z, z, z)\]
or
\[(y, y, z)(z, y, z) = (z(y, y, z), y, z) = -(z, y(y, y)y, z) = (z, z(y, y, y), z) = (y, y, y)(z, z, z)\]
which shows \(2(y, y, y)(z, z, z) = 0\).

Theorem 1. Let \(R\) be a ring without nonzero ideals \(\neq R\) satisfying (*). If \(V\) is a subalgebra of \(R\) and \((x, x, x)\) is nilpotent for each \(x \in R\), then \(R\) is either associative or commutative.

Proof. The ideal \(W\) of Lemma 2 is contained in the commutative subalgebra \(V\) of \(R\). Since \(R\) has no nontrivial ideal either \(W = R\) or \(W = 0\). In the first case \(R\) is commutative. Let us therefore consider the case \(W = 0\). By Corollary 2 all associators are in the center of \(R\) and are nilpotent by Corollary 3. Therefore \(R(x, y, z)\) is a nilpotent ideal of \(R\). Hence \(R(x, y, z) = 0\). This implies \((x, y, z) \in W\) or \((x, y, z) = 0\).

Remark. In Lemma 1 we saw that the assumption that \(V\) is a subalgebra of \(R\) is a very mild restriction. From the proof of Corollary 3 we see \(2(x, x, x)^2 = 0\). Hence the assumption that \((x, x, x)\) is nilpotent is only necessary in case \(2y = 0\) for all \(y \in R\).

Corollary. Let \(R\) be a simple ring satisfying (*). Then \(R\) is commutative or associative if one of the following conditions is satisfied:

(a") \((x, x, y) + (y, x, x) - 2(x, y, x) = 0\) and \(2z = 0\) implies \(z = 0\).
(b") \((x, y, z) + (y, z, x) + (z, x, y) = 0\).
(c") \((x, x, x) = 0\) and \(2z = 0\) implies \(z = 0\).
(d") \((x, y, x) = 0\).

Construction of semiprime rings. In the preceding section we classified the simple rings satisfying (*). In similar cases, e.g. for rings with commutators in the nucleus, one can make a similar statement with simple weakened to prime or even semiprime \([5], [6], [9], [12], [13]\). This is not true for rings satisfying (*). We will give a construction of prime and semiprime rings to get counterexamples.

Let us recall that a ring is called prime if the product of any two (two-sided) nonzero ideals is nonzero. We call a ring semiprime, if the square of any nonzero ideal is nonzero. Clearly prime rings are semiprime.
Let k be a field and R a k-algebra with unit element e. We assume that R has a subvectorspace $M \neq 0$ containing all commutators such that $R = ke + M$ is a direct sum. Let ku be the k-vectorspace generated by some element $u \in R$. On the direct sum $R^u := ku + R$ we define a k-algebra structure by conserving the multiplication in R and requiring $u^2 = u$, $eu = ue = u$, $um = mu = 0$ for $m \in M$. It is clear that R^u is then a k-algebra with unit element e having R as a subalgebra and ku as an ideal such that $(ku)^2 = ku$. Some of the properties of R^u we state in

Theorem 2. (i) If R is simple, then R^u is prime.
(ii) If R is semiprime, then R^u is semiprime.
(iii) If R is semiprime, then R^u is semiprime.
(iv) If $f(x_1, \ldots, x_n)$ is a relation on R, then $f(x_1, \ldots, x_n, x_{n+1}) = 0$ is a relation on R^u.

Proof. Since ku is an ideal the only nontrivial statements are (i) and (ii). Let $I \neq 0$ be an ideal of R^u and $x = ae + \beta u + \delta m \in I$, $x \neq 0$. Then $y := x - ux = \alpha (e - u) + \delta m \in I$. In case $R \cap I = 0$ we have $ny = yn = 0$ for each $n \in M$. From $y^2 = \alpha y$ we see $I^2 \neq 0$ for $\alpha \neq 0$. In case $\alpha = 0$ we have $y = \delta m \in R \cap I = 0$ or $x = \beta u$ and $u \in I$. Thus $R \cap I = 0$, $I \neq 0$, implies $I^2 \neq 0$. If R is semiprime, then $R \cap I = 0$ also implies $I^2 \neq 0$ since $R \cap I$ is a nonzero ideal of R. This proves (ii). If R is simple, then $R \cap I = 0$ implies $I = R^u$. In case $R \cap I = 0$, $I \neq 0$, we see from $ny = yn = 0$ for $n \in M$ that $k(\alpha e + \delta m)$ is an ideal of R. Hence either $R = ke$, $m = 0$ or $\alpha e + \delta m = 0$. In the first case $M = 0$ which was excluded. Hence $\beta u \in I$, $\beta \neq 0$, and we see $I = ku$. Since the only ideals of R^u are $0, ku, R^u$ we conclude that R^u is prime.

Corollary. If R satisfies one of the following relations, then R^u satisfies the same relation.

(a) $(x, x, y) + (y, x, x) - 2(x, y, x) = 0$.
(b) $(x, y, z) + (y, z, x) + (z, x, y) = 0$.
(c) $(x, x, x) = 0$.
(d) $(x, y, x) = 0$ (flexibility).
(e) $[x, y] = 0$ (commutativity).

Proof. We have only to remark that as in Lemma 1 each of the relations can be rewritten by using commutators so that (iii) applies.

For simple R we have $M M \subseteq M$ and we can find $m, m_i, n_i \in M$ such that $e = m + \sum m_i n_i$. This shows $\sum (m_i, n_i, u) = u$, $\sum (u, m_i, n_i) = -u$ and hence R^u is not associative and not alternative for char $k \neq 2$. But by (iv) of Theorem 2 for associative R the relation $(*)$ holds on R^u.

Now let $R \neq ke$ be a simple finite-dimensional associative algebra,
e.g. a quaternion algebra, over k. Then R has a nonzero subspace M containing all commutators such that $R = ke + M$ is direct. The corresponding algebra R^u is prime, flexible, and satisfies (*) but is neither commutative nor associative. This shows that Theorem 1 cannot be extended to prime rings.

References

Aarhus University, Aarhus C, Denmark