Property $P$ and direct integral decomposition of $W^*$-algebras
HTML articles powered by AMS MathViewer
- by Paul Willig
- Proc. Amer. Math. Soc. 29 (1971), 494-498
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279600-X
- PDF | Request permission
Abstract:
If $\mathcal {A}$ is a $W{{\text {-}}^\ast }$ algebra on separable Hilbert space H, and if $\mathcal {A}(\lambda )$ are the factors in the direct integral decomposition of $\mathcal {A}$, then $\mathcal {P} = \{ \lambda |\mathcal {A}(\lambda )$ has property P} is $\mu$-measurable, and $\mathcal {A}$, has property P iff $\mathcal {A}(\lambda )$ has property P $\mu$-a.e.References
- Wai-mee Ching, A continuum of non-isomorphic non-hyperfinite factors, Comm. Pure Appl. Math. 23 (1970), 921β937. MR 279593, DOI 10.1002/cpa.3160230605
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- JΓ΄suke Hakeda, On property $\textrm {P}$ of von Neumann algebras, Tohoku Math. J. (2) 19 (1967), 238β242. MR 217608, DOI 10.2748/tmj/1178243321
- Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138β171. MR 218905, DOI 10.2307/1970364
- J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19β26. MR 149322, DOI 10.1002/cpa.3160160104
- J. Schwartz, Non-isomorphism of a pair of factors of type $III$, Comm. Pure Appl. Math. 16 (1963), 111β120. MR 163179, DOI 10.1002/cpa.3160160203
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
- Paul Willig, Trace norms, global properties, and direct integral decompositions of $W^*$-algebras, Comm. Pure Appl. Math. 22 (1969), 839β862. MR 270170, DOI 10.1002/cpa.3160220607
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 494-498
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279600-X
- MathSciNet review: 0279600