Central functions in group algebras
HTML articles powered by AMS MathViewer
- by Richard D. Mosak
- Proc. Amer. Math. Soc. 29 (1971), 613-616
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279602-3
- PDF | Request permission
Abstract:
In this paper we show that for a locally compact group G, the group algebra ${L_1}(G)$ has nontrivial center if and only if G possesses a compact neighborhood of 1, invariant under inner automorphisms. Moreover, G has a basis of such neighborhoods at 1 if and only if ${L_1}(G)$ has an approximate identity consisting of functions in the center of ${L_1}$. This constitutes part of a program of finding conditions on the group algebra which characterize groups satisfying various compactness conditions (see e.g., [3]).References
- Roger Godement, Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. (9) 30 (1951), 1–110 (French). MR 41857
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Siegfried Grosser and Martin Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc. 156 (1971), 419–454. MR 276418, DOI 10.1090/S0002-9947-1971-0276418-3
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496 R. Mosak, The ${L^1}$- and ${C^\ast }$-algebras of $[{\text {FIA}}]_B^ -$ groups, and their representations (to appear).
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 613-616
- MSC: Primary 46.80; Secondary 22.00
- DOI: https://doi.org/10.1090/S0002-9939-1971-0279602-3
- MathSciNet review: 0279602