A WHITEHEAD TYPE THEOREM

H. B. HASLAM

Abstract. Let \mathcal{F} denote the Serre class of finite abelian groups. We consider, for example, conditions under which a map which induces an \mathcal{F}-epimorphism in homotopy also induces an \mathcal{F}-epimorphism in homology.

1. Introduction. Let $f: X \to Y$ be a map, \mathcal{C} a Serre class of abelian groups. Modulo some technical assumptions on the spaces X and Y or the class \mathcal{C}, the Whitehead theorem states that f induces a \mathcal{C}-isomorphism in homotopy in each dimension if and only if it induces a \mathcal{C}-isomorphism in homology in each dimension. We are concerned here with finding conditions under which the word “isomorphism” can be replaced by “epimorphism” or “monomorphism” for the class \mathcal{F} of finite abelian groups. For example, we show that if a map g from an H-space Y to a 1-connected finite CW-complex X induces an \mathcal{F}-epimorphism in homotopy, then it induces an \mathcal{F}-epimorphism in homology and X is an H-space mod \mathcal{F}. As a special case we recover a result of [4]: If X is a 1-connected finite CW-complex and a G-space mod \mathcal{F} (i.e. the evaluation map $\omega: (X^2, 1) \to (X, *)$ induces an \mathcal{F}-epimorphism in homotopy), then X is an H-space mod \mathcal{F}. (The converse is also true.) Moreover, ω induces an \mathcal{F}-epimorphism in homology. The proof given here is much simpler than that given in [4].

I wish to thank W. Browder for a conversation which motivated this note.

All spaces are assumed to have the based homotopy type of a CW-complex and all maps and homotopies are to preserve base points. We will frequently not distinguish between a map and its homotopy class. The symbol “\mathcal{F}” will be used to denote Hurewicz homomorphisms. We assume that the reader is familiar with [1] and [2].

2. The result. Let X be a 1-connected finite CW-complex, Y be a 1-connected space with $H_m(Y)$ finitely generated for all m and let $f: X \to Y, g: Y \to X$ be maps.

Theorem 1. Suppose that Y is an H-space.
(i) If $f_*: \pi_m(X) \to \pi_m(Y)$ is an \mathfrak{f}-monomorphism for all m, then so is $f_*: H_m(X) \to H_m(Y)$.

(ii) If $g_*: \pi_m(Y) \to \pi_m(X)$ is an \mathfrak{f}-epimorphism for all m, then so is $g_*: H_m(Y) \to H_m(X)$. Moreover, X, in each case, is an H-space mod \mathfrak{f}.

Theorem 2. Suppose that Y is an H'-space.

(i) If $f_*: H_m(X) \to H_m(Y)$ is an \mathfrak{f}-monomorphism for all m, then so is $f_*: \pi_m(X) \to \pi_m(Y)$.

(ii) If $g_*: H_m(Y) \to H_m(X)$ is an \mathfrak{f}-epimorphism for all m, then so is $g_*: \pi_m(Y) \to \pi_m(X)$. Moreover, X, in each case, is an H'-space mod \mathfrak{f}.

Remark. The 1-connectedness assumption on Y is needed only for Theorem 2 (ii) and neither assumption on Y is needed for Theorem 1 (ii).

We will need the following result, the proof of which depends only on the universal coefficient theorem and the representability of cohomology.

Lemma 1. Let B be a space for which $H_m(B)$ is finitely generated and let $\beta \in \pi_m(B)$. Then $h(\beta) \neq 0$ if and only if there is a map $h: B \to K(\pi, m)$ (= an Eilenberg-Mac Lane space) such that $h\beta$ is not homotopic to a constant. (We may take $\pi = \mathbb{Z}_p$ or \mathbb{Z} depending on whether $h(\beta)$ has finite or infinite order.)

Lemma 2. Let $a: A \to B$ be a map from an H-space A to a finite CW-complex B. If $a_*: \pi_{2n}(A) \to \pi_{2n}(B)$ is an \mathfrak{f}-epimorphism, then $h(\pi_{2n}(B)) \in \mathfrak{f}$.

Proof. It suffices to show that $h(\beta)$ has finite order for each $\beta \in \pi_{2n}(B)$. In order to obtain a contradiction, assume that there is a $\beta \in \pi_{2n}(B)$ such that $h(\beta)$ has infinite order. By Lemma 1, there is a map $h: B \to K(Z, 2n)$ such that $h\beta$ is not homotopic to a constant. Since $a_*: \pi_{2n}(A) \to \pi_{2n}(B)$ is an \mathfrak{f}-epimorphism there is an $\alpha \in \pi_{2n}(A)$ such that $a_*(\alpha) = r\beta$ where r is some nonzero integer. Now, if $\rho: \Sigma A \to A$ is a retraction map (A is an H-space), then $h \circ \Omega \Sigma \alpha: \Omega \Sigma S^{2n} \to K(Z, 2n)$ is a nontrivial map which factors through a finite complex. This is clearly impossible (consider the ring structure of $H^*(\Omega \Sigma S^{2n})$) and the lemma is proved.

Corollary 1. If B is $(2n-1)$-connected, then $\pi_{2n}(B) \in \mathfrak{f}$.

Proof of Theorem 1. (i) Since the homotopy suspension homomorphism for an H-space is a monomorphism in all dimensions, it follows that the suspension homomorphism $i_*: \pi_m(X) \to \pi_m(\Sigma X)$ (i is the inclusion map) is an \mathfrak{f}-monomorphism for all m and therefore that X is an H-space mod \mathfrak{f}. Let $h: S \to X$ be a weak \mathfrak{f}-equivalence,
where S is a finite product of odd dimensional spheres. Since the Hurewicz homomorphism $h: \pi_m(Y) \to H_m(Y)$ is an \mathfrak{F}-isomorphism, it follows from Lemma 1 that fh induces an \mathfrak{F}-epimorphism in homology and hence an \mathfrak{F}-monomorphism in homology. Thus f induces an \mathfrak{F}-monomorphism in homology.

(ii) We first show, by induction, that $\pi_{2n}(X) \in \mathfrak{F}$ for all n. For $n = 1$, this follows from Corollary 1. Assume that $\pi_{2n}(X) \in \mathfrak{F}$ for $2n < N$, N odd. Since $g^*: \pi_m(Y) \to \pi_m(X)$ is an \mathfrak{F}-epimorphism for all m, we can use the multiplication on Y to obtain a map $h_N: S \to Y$ such that gh_N induces an \mathfrak{F}-isomorphism in homotopy in dimensions $\leq N$, where S is a finite product of odd dimensional spheres S^n, $3 \leq n_i \leq N$. We can assume that gh_N is an inclusion map. Then $\pi_m(X, S) \in \mathfrak{F}$ for all $m \leq N$; by the Hurewicz theorem, $h: \pi_{2n+1}(X, S) \to H_{2n+1}(X, S)$ is an \mathfrak{F}-isomorphism. Since $\pi_{2n+1}(S) \in \mathfrak{F}$, it follows that $h: \pi_{2n+1}(X) \to H_{2n+1}(X)$ is an \mathfrak{F}-monomorphism and so, by Lemma 2, $\pi_{2n}(X) \in \mathfrak{F}$ for all n. It is now a simple matter to show that for $N \geq \dim X$, gh_N is a weak \mathfrak{F}-equivalence. Therefore X is an \mathfrak{H}-space mod \mathfrak{F} and $g^*: \pi_m(F) \to \pi_m(X)$ is an \mathfrak{F}-epimorphism for all m.

Proof of Theorem 2. (i) Since $f^*: H_m(X) \to H_m(Y)$ is an \mathfrak{F}-monomorphism for all m, $f^*: H^n(Y) \to H^n(X)$ is an \mathfrak{F}-epimorphism for all m. Let $\{\beta_i\}$ be a basis for the free part of $H^*(X)$ and let $\{\gamma_i\} \subset H^*(Y)$ be chosen so that $f^*(\gamma_i) = \iota_i \beta_i$ for some nonzero integer ι_i. Let $r > \dim X$ be arbitrary, $\gamma_i = \gamma_i Y$, where Y^r is the r-skeleton of Y.

Since $\gamma_i \cup \gamma_i = 0$ (Y is an H'-space), $\gamma_i \cup \gamma_i = 0$ and $[3]$ there is a map $h_i: Y^r \to S^n$, $n_i = \dim Y_i$, which maps the fundamental class of S^n to some nonzero multiple of γ_i. Making use of the fact that Y is an H'-space we obtain a map $h: Y^r \to V S^{n_i}$ (as in $[3]$) such that hf is a weak \mathfrak{F}-equivalence (by the cellular approximation theorem we can assume $f(X) \subset Y^r$). Therefore X is an H'-space mod \mathfrak{F} and $f^*: \pi_m(X) \to \pi_m(Y)$ is an \mathfrak{F}-monomorphism for $m < r$. Since r was arbitrary the result follows.

(ii) Since the Hurewicz homomorphism for an H'-space is an \mathfrak{F}-epimorphism in all dimensions, it follows that $h: \pi_m(X) \to H_m(X)$ is an \mathfrak{F}-epimorphism for all m and hence that X is an H'-space mod \mathfrak{F}. Moreover, it is clear that there is a map $h: V S^{n_i} \to Y$ such that fh is a weak \mathfrak{F}-equivalence and the result follows.

Remark. In contrast to the Whitehead theorem, the converse of each assertion in Theorems 1 and 2 is false. Counterexamples are given as follows:

1(i). The inclusion map $S^{2n} \to \Omega \Sigma S^{2n}$.

1(ii). The quotient map $S^n \times S^n \to S^n \wedge S^n = S^{2n}$, $n = 3$ or 7.
2(i). The Whitehead product map $S^{m+n-1} \rightarrow S^m \vee S^n$, $m+n$ even, $m, n \geq 2$.

2(ii). The inclusion map $S^m \vee S^n \rightarrow S^m \times S^n$.

BIBLIOGRAPHY

Florida State University, Tallahassee, Florida 32306