A FIXED POINT THEOREM FOR SEMIGROUPS OF MAPPINGS WITH A CONTRACTIVE ITERATE

V. M. SEHGAL AND J. W. THOMAS

Abstract. In a recent paper, Felix E. Browder discussed continuous self-mappings on a metric space, satisfying a functional inequality. Browder gave sufficient conditions such that the successive approximations of any point for such mappings converge to a unique fixed point. In the present paper, Browder's result is extended to a commutative semigroup of mappings and also to single mappings that are not necessarily continuous and satisfy a weaker form of the functional inequality.

1. It is the purpose of this paper to generalize the following result of Felix Browder [2], under the assumption that the set M there is closed.

Theorem 1. Let (X, d) be a complete metric space, M a bounded subset of X, T a mapping of M into M. Suppose there exists a monotone nondecreasing function $\psi(r)$ for $r \geq 0$ with ψ continuous on the right, such that $\psi(r) < r$ for all $r > 0$, while for $x, y \in M$,

$$d(T(x), T(y)) \leq \psi(d(x, y)).$$

Then, for each $x_0 \in M$, $T^n(x_0) \to \xi \in X$, independent of x_0, and

$$d(T^n(x_0), \xi) \leq \psi^n(d_0),$$

where d_0 is the diameter of M, ψ^n is the nth iterate of ψ, and

$$d_n = \psi^n(d_0) \to 0 \quad \text{as } n \to \infty.$$

It may be remarked that if M is closed, then it follows that ξ is the unique fixed point of T in M, and (2) provides an estimate for $d(T^n(x_0), \xi)$. Boyd and Wong [1] have obtained a result similar to Theorem 1, without the estimate (2), where the domain of T is unbounded.

2. Let (X, d) be a complete metric space and $M \subseteq X$. Let F be a commutative semigroup of self-mappings (not necessarily continuous) of M. The semigroup F is pointwise contractive in M if for each $x \in M$, there is an $f_x \in F$ such that

$$d(f_x(y), f_x(x)) \leq \psi(d(y, x)).$$
for all \(y \in M \), where \(\psi \) is some real valued function defined on the nonnegative reals.

Theorem 2. Let \(M \) be a closed subset of \(X \) and \(F \) a commutative semigroup of self-mappings of \(M \), which is pointwise contractive in \(M \) for some \(\psi : [0, \infty) \rightarrow [0, \infty) \), where \(\psi \) is nondecreasing, continuous on the right and satisfies \(\psi(r) < r \) for all \(r > 0 \). If for some \(x_0 \in M \),

\[
\sup \{ d(f(x_0), x_0) : f \in M \} < \infty,
\]

then, there exists a unique \(\xi \in M \) such that \(f(\xi) = \xi \) for each \(f \in F \). Moreover, there is a sequence \(\{ g_n \} \subseteq F \) with \(g_n(x) \rightarrow \xi \) for each \(x \in M \).

Proof. Let \(d_0 = \sup \{ d(f(x_0), x_0) : f \in F \} \). Then, \(\psi^n(d_0) \) is a nonincreasing sequence of nonnegative reals, and therefore, \(\psi^n(d_0) \rightarrow \infty \). If \(r > 0 \), then \(\psi(\lim_n \psi^n(d_0)) < r \), that is, \(r = \lim_n \psi^n(d_0) \). We conclude, therefore, that \(\lim_n \psi^n(d_0) = 0 \).

Set \(f_0 = f_{x_0} \) and inductively \(f_n = f_{x_n} \) where \(x_{n+1} = f_n(x_n) \). Then, for a fixed integer \(k \geq 0 \),

\[
\sup_{n \geq k} d(x_{n+1}, x_{k+1}) = \sup_{n \geq k} d(f_n \cdot f_{n-1} \cdots f_k(x_k), f_k(x_k)).
\]

Set \(h_n = f_n \cdot f_{n-1} \cdots f_{k+1} \). It follows that

\[
\sup_{n \geq k} d(x_{n+1}, x_{k+1}) = \sup_{n \geq k} d(h_n(x_k), f_k(x_k)) \leq \sup_{n \geq k} \psi(d(h_n(x_k), x_k)) \leq \sup_{n \geq k} \psi^{k+1}(d(h_n(x_0), x_0)) \leq \psi^{k+1}(d_0) \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty.
\]

The sequence \(\{ x_n \} \) is therefore, Cauchy. Let \(x_n \rightarrow \xi \in M \). Then, by hypothesis, there is a \(f_\xi \in F \) such that

\[
d(f_\xi(x_n), f_\xi(\xi)) \leq \psi(d(x_n, \xi)) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]

Thus, \(f_\xi(x_n) \rightarrow f_\xi(\xi) \), and therefore \(d(f_\xi(\xi), \xi) = \lim_n d(f_\xi(x_n), x_n) \). However,

\[
d(f_\xi(x_n), x_n) \leq \psi(d(f_\xi(x_{n-1}), x_{n-1})) \leq \psi^n(d(f_\xi(x_0), x_0)) \leq \psi^n(d_0) \rightarrow 0
\]

as \(n \rightarrow \infty \). Hence \(f_\xi(\xi) = \xi \). It follows from (3) that \(\xi \) is the unique fixed point of \(f_\xi \). Furthermore, by the commutativity of \(F \), we have, for any \(f \in F \),

\[
f(\xi) = f(f_\xi(\xi)) = f_\xi(f(\xi)),
\]

and therefore \(f(\xi) = \xi \).
Finally, for each nonnegative integer n, set $g_n = f_n \cdot f_{n-1} \cdot \cdots \cdot f_0$. Then $g_n \in F$. We show that $g_n(x) \to \xi$ for each $x \in M$. If $d(x) = d(x, x_0)$, then it follows that $\psi^n(d(x)) \to 0$. We have

$$d(g_n(x), \xi) \leq d(g_n(x), x_{n+1}) + d(x_{n+1}, \xi).$$

Since $x_n \to \xi$, it suffices to show that $d(g_n(x), x_{n+1}) \to 0$. However,

$$d(g_n(x), x_{n+1}) = d(f_n(g_{n-1}(x)), f_n(x_n)),$$

$$\leq \psi(g_{n-1}(x), x_n),$$

$$\leq \psi^{n+1}(d(x, x_0)) = \psi^{n+1}(d(x)) \to 0 \text{ as } n \to \infty.$$

Thus $d(g_n(x), x_{n+1}) \to 0$. This completes the proof.

If M is a bounded subset of X, then since (4) holds for each $x_0 \in M$, we have

Corollary 1. Let M be a closed bounded subset of X, and F a commutative semigroup of self-mappings of M which is pointwise contractive in M for some $\psi: [0, \infty) \to [0, \infty)$, where ψ is nondecreasing, continuous on the right and satisfies $\psi(r) < r$ for $r > 0$. Then there exist a sequence $\{g_n\} \subseteq F$ and a unique $\xi \in M$ such that $f(x) = \xi$ for all $f \in F$, and $g_n(x) \to \xi$ for each $x \in M$.

Corollary 2. Let M be a closed bounded subset of X, and f a self-mapping of M. If f satisfies the condition: for each $x \in M$, there exists an integer $n(x) \geq 1$ such that, for all $y \in M$,

$$d(f^{n(x)}(y), f^{n(x)}(x)) \leq \psi(d(y, x)),$$

where $\psi: [0, \infty) \to [0, \infty)$ is nondecreasing, continuous on the right and satisfies $\psi(r) < r$ for $r > 0$, then there is a unique $\xi \in M$ such that $f(x) = \xi$ for each $x \in M$ and $f(\xi) = \xi$.

Proof. Since $F = \{f^n : n \geq 0\}$ is a commutative semigroup which is pointwise contractive in M, the existence and uniqueness of $\xi \in M$ follow by Corollary 1. We show that $f^n(x) \to \xi$ for each $x \in M$. Let d_0 be the diameter of the set M. Then if n is sufficiently large, we have $n = r \cdot n(\xi) + s$, with $r > 0$ and $0 \leq s < n(\xi)$, and, therefore,

$$d(f^n(x), \xi) = d(f^{r \cdot n(\xi) + s}(x), f^{n(\xi)}(\xi)) \leq \psi^{r}(d(f^s(x), \xi)) \leq \psi(r).$$

Since $\psi(r) \to 0$, and $r \to \infty$ as $n \to \infty$, it follows therefore that $f^n(x) \to \xi$.

Remark 1. It should be noted that inequality (6) provides the analogue to Browder’s estimate (2).

Remark 2. For bounded metric spaces, Corollary 2 is an extension of a result of the first author [4] and also of a recent result of L. F. Guseman [2]. Note that Theorem 2 and its corollaries provide
generalizations of Theorem 1 under the assumption that the set M is closed.

References

University of Wyoming, Laramie, Wyoming 82070