ERRATA TO VOLUME 26

Page 23. In the left member of equation (1.2),

\[\sum \rightarrow \Pi. \]

Page 26. In equation (3.7),

\[\left(1 + \frac{x^{1-2\alpha}}{a} \right) x^{2r}, \quad \text{read} \left(1 + \frac{x^{1-2\alpha}}{a} \cdot x^{2r} \right). \]

p. 476, line 2, “\(\lambda_a^2 \)” shall read “\(\mu_a^2 \)”.

line 8, “\(\lambda_a^2 \)” shall read “\(\lambda_{\alpha} \)”.

and

p. 477, line 6, “\(c_{N+1/2} \)” shall read “\(c_{N+1/2\pi} \)”.

ERRATA TO VOLUME 27

In [1], it was stated in the body of the text that the lattice \(L \) of all “\(\perp \)-closed” subspaces of the space \(l_2(F) \) of square-summable \(F \)-sequences, \(F \) an arbitrary division subring of the quaternions, is atomistic and irreducible. We have found an oversight in our proof of these two facts, it being valid only in the case that \(F \) is closed under quaternionic conjugation. We have been unable to decide the question in the general case. The validity of the main theorem is unaffected. (The main theorem asserts that \(L \) is orthomodular if and only if \(F \) is the reals, the complex numbers, or the quaternions.) Additional details are given in a paper entitled *Orthomodularity and the direct sum of division subrings of the quaternions*, which has been submitted for publication.