## Tame polyhedra in wild cells and spheres

HTML articles powered by AMS MathViewer

- by R. B. Sher
- Proc. Amer. Math. Soc.
**30**(1971), 169-174 - DOI: https://doi.org/10.1090/S0002-9939-1971-0281178-1
- PDF | Request permission

## Abstract:

It is shown that each arc on a disk*D*in ${E^4}$ can be homeomorphically approximated by an arc in

*D*which is tame in ${E^4}$. Some applications of this are given. Also, we construct an everywhere wild $(n - 1)$-sphere in ${E^n},n \geqq 3$, each of whose arcs is tame in ${E^n}$.

## References

- Steve Armentrout,
*Homotopy properties of decomposition spaces*, Trans. Amer. Math. Soc.**143**(1969), 499–507. MR**273574**, DOI 10.1090/S0002-9947-1969-0273574-9 - R. H. Bing,
*A wild surface each of whose arcs is tame*, Duke Math. J.**28**(1961), 1–15. MR**123302** - J. L. Bryant,
*On embeddings with locally nice cross-sections*, Trans. Amer. Math. Soc.**155**(1971), 327–332. MR**276983**, DOI 10.1090/S0002-9947-1971-0276983-6 - J. C. Cantrell,
*$n$-frames in euclidean $k$-space*, Proc. Amer. Math. Soc.**15**(1964), 574–578. MR**164330**, DOI 10.1090/S0002-9939-1964-0164330-1 - R. J. Daverman and W. T. Eaton,
*An equivalence for the embeddings of cells in a $3$-manifold*, Trans. Amer. Math. Soc.**145**(1969), 369–381. MR**250280**, DOI 10.1090/S0002-9947-1969-0250280-8
—, - Herman Gluck,
*Embeddings in the trivial range*, Ann. of Math. (2)**81**(1965), 195–210. MR**173243**, DOI 10.2307/1970614 - John Hollingsworth and R. B. Sher,
*Triangulating neighborhoods in topological manifolds*, General Topology and Appl.**1**(1971), 345–348. MR**296952** - C. Lacher,
*Locally flat strings and half-strings*, Proc. Amer. Math. Soc.**18**(1967), 299–304. MR**212805**, DOI 10.1090/S0002-9939-1967-0212805-1 - T. B. Rushing,
*Everywhere wild cells and spheres*, Rocky Mountain J. Math.**2**(1972), no. 2, 249–258. MR**301741**, DOI 10.1216/RMJ-1972-2-2-249
Charles L. Seebeck III, - R. B. Sher,
*Determining the cellularity of a $i$-complex by properties of its arcs*, Proc. Amer. Math. Soc.**26**(1970), 491–498. MR**270353**, DOI 10.1090/S0002-9939-1970-0270353-7

*Each disk in*${E^n}$

*can be squeezed to an arc*(to appear).

*Tame arcs on wild cells*(to appear).

## Bibliographic Information

- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**30**(1971), 169-174 - MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1971-0281178-1
- MathSciNet review: 0281178