Approximations of the identity operator by semigroups of linear operators
HTML articles powered by AMS MathViewer
- by A. Pazy
- Proc. Amer. Math. Soc. 30 (1971), 147-150
- DOI: https://doi.org/10.1090/S0002-9939-1971-0287362-5
- PDF | Request permission
Abstract:
Let $T(t),t \geqq 0$, be a strongly continuous semigroup of linear operators on a Banach space X. It is proved that if for every $C > 0$ there exists a ${\delta _c} > 0$ such that $\left \| {I - T(t)} \right \| \leqq 2 - Ct\log (1/t)$ for $0 < t < {\delta _c}$ then $AT(t)$ is bounded for every $t > 0$. It is shown by means of an example that $\left \| {I - T(t)} \right \| \leqq 2 - Ct$ for a fixed C and all $0 < t < \delta$ is not sufficient to assure the boundedness of $AT(t)$ for any $t \geqq 0$.References
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- J. W. Neuberger, Analyticity and quasi-analyticity for one-parameter semigroups, Proc. Amer. Math. Soc. 25 (1970), 488–494. MR 259661, DOI 10.1090/S0002-9939-1970-0259661-3
- Tosio Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495–498. MR 264456, DOI 10.1090/S0002-9939-1970-0264456-0
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1968), 1131–1141. MR 0231242
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 30 (1971), 147-150
- MSC: Primary 47.50
- DOI: https://doi.org/10.1090/S0002-9939-1971-0287362-5
- MathSciNet review: 0287362