Topological algebras and Mackey topologies
HTML articles powered by AMS MathViewer
- by Allan C. Cochran
- Proc. Amer. Math. Soc. 30 (1971), 115-119
- DOI: https://doi.org/10.1090/S0002-9939-1971-0291807-4
- PDF | Request permission
Abstract:
Let E be a locally m-convex algebra with dual space $Eā$. In a recent paper S. Warner asked if the finest locally m-convex topology on E compatible with $Eā$ was the mackey topology. It is shown that this is not the case. A similar result is given for this question in the A-convex algebra case. For any A-convex algebra, a construction is given of an associated locally m-convex algebra. It is shown that this associated locally m-convex topology is always the compact-open topology for the space ${C_b}(S)$ with the strict topology.References
- Richard Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455ā471. MR 51445
- R. Creighton Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95ā104. MR 105611
- A. C. Cochran, R. Keown, and C. R. Williams, On a class of topological algebras, Pacific J. Math. 34 (1970), 17ā25. MR 273399
- Allan C. Cochran, Weak $A$-convex algebras, Proc. Amer. Math. Soc. 26 (1970), 73ā77. MR 262830, DOI 10.1090/S0002-9939-1970-0262830-X
- John B. Conway, The strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72 (1966), 75ā78. MR 187054, DOI 10.1090/S0002-9904-1966-11423-4
- Ernest A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79. MR 51444
- Peter D. Morris and Daniel E. Wulbert, Functional representation of topological algebras, Pacific J. Math. 22 (1967), 323ā337. MR 213876
- Seth Warner, Weak locally multiplicatively-convex algebras, Pacific J. Math. 5 (1955), 1025ā1032. MR 76295
- Seth Warner, Inductive limits of normed algebras, Trans. Amer. Math. Soc. 82 (1956), 190ā216. MR 79226, DOI 10.1090/S0002-9947-1956-0079226-3
- W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121ā131. MR 251521, DOI 10.1090/S0002-9947-1969-0251521-3
- Ju-kwei Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131ā1149. MR 138014
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 30 (1971), 115-119
- MSC: Primary 46H05
- DOI: https://doi.org/10.1090/S0002-9939-1971-0291807-4
- MathSciNet review: 0291807