A DIFFERENTIATION THEOREM FOR FUNCTIONS DEFINED ON THE DYADIC RATIONALS

R. J. LINDAHL

Abstract. In this paper we show that under certain conditions a real-valued function defined on an interval of dyadic rational numbers is a monotone function. One of these conditions involves a generalized differentiability property. From this result we offer a new proof of a conjecture of N. Fine concerning the uniqueness of solution of Walsh series.

1. Introduction. Let \(f \) be a real-valued function defined on \((a, b) \cap D, a < b\), where \(D \) denotes the set of dyadic rational numbers. In this paper we shall describe conditions on \(f \) which will ensure that \(f \) is monotone decreasing on \((a, b) \cap D\). This will enable us to reprove a conjecture of N. Fine [2] concerning the uniqueness of solution of Walsh series.

For our purposes we introduce the following functions.

Given any nonnegative integer \(n \) and real number \(x \), let \(\alpha_n(x) = k/2^n, \beta_n(x) = (k+1)/2^n \) where \(k \) is that integer for which \(k \leq 2^n x < k + 1 \). Also set

\[
\alpha'_n(x) = \alpha_n(x), \quad x \in D,
\]

\[
= \alpha_n(x) - 1/2^n, \quad x \not\in D.
\]

Now given any \(x \) in \((a, b)\) we write

\[
D_n f(x) = \limsup_{n \to \infty} \left[f(\beta_n(x)) - f(\alpha_n(x)) \right] \cdot 2^n.
\]

2. The main theorem. Let \(G \) be a real-valued function defined on \((a, b) \cap D\). Our primary result can be stated as follows.

Theorem. Assume that \(G \) satisfies the following conditions:

(i) \(\limsup_{n \to \infty} G(\alpha'_n(x)) = G(x), \quad x \in (a, b) \cap D. \)

(ii) \(\liminf_{n \to \infty} [G(\beta_n(x)) - G(\alpha_n(x))] \leq 0, \quad x \in (a, b). \)

(iii) \(D_n G(x) \leq 0, \quad x \in (a, b) \setminus E \) for some countable set \(E \).

Then \(G \) is monotone decreasing on \((a, b) \cap D\).

Proof. Clearly one may assume that \(E = \{ x_k \}_{k=1}^\infty \) contains the

Received by the editors June 10, 1969 and, in revised form, November 9, 1970.
AMS 1969 subject classifications. Primary 2640, 2650; Secondary 4211.
Key words and phrases. Monotone functions on dyadic rationals, Walsh series, Walsh-Fourier series.

Copyright © 1971, American Mathematical Society

349
dyadic rationals in \((a, b)\). Moreover, by considering the functions
\[G_\epsilon(x) = G(x) - \epsilon x, \ x \in (a, b) \]
for each \(\epsilon > 0\) we see that one may assume \(G\) satisfies
\[(iv) \quad \liminf_{n \to \infty} 2^n \left[G(\beta_n(x)) - G(\alpha_n(x)) \right] < -\epsilon \]
for some \(\epsilon > 0\) and all \(x\) in \((a, b)\)\(\setminus\)\(E\). Now once we have established that
\[G(k/2^p) \leq G((k - 1)/2^p), \quad (k - 1)/2^p, k/2^p \in (a, b), \]
where \(k\) and \(p\) are integers, \(p \geq 0\), the theorem follows. Hence assume to the contrary that there exists integers \(k_0\) and \(p\), \(p \geq 0\), with \((k_0 - 1)/2^p, k_0/2^p \in (a, b)\) such that
\[G(k_0/2^p) > G((k_0 - 1)/2^p). \]
Set \(\xi_0 = (k_0 - 1)/2^p, \eta_0 = k_0/2^p, I_0 = [\xi_0, \eta_0]\). It will prove convenient to define a set function \(\mu\) by:
\[\mu([\xi, \eta]) = G(\eta) - G(\xi), \quad \xi, \eta \in D \cap (a, b). \]
Then \(\mu(I_0) > 0\) by assumption. Let \(E_0 = E\) and define \(I_n, E_n\) inductively by the following procedure. Having chosen \(I_n = [\xi_n, \eta_n]\), \(\xi_n, \eta_n \in (a, b) \cap D\) with \(\mu(I_n) > 0\) and \(E_n = E \cap I_n\), let
\[I_n^1 = \left[\xi_n, \frac{\xi_n + \eta_n}{2} \right], \quad I_n^2 = \left[\frac{\xi_n + \eta_n}{2}, \eta_n \right]. \]
If \(E_n\) is empty, set \(I_{n+1} = I_n^i\) where \(i \in \{1, 2\}\) is smallest possible such that \(\mu(I_n^i) > 0\). If \(E_n\) is nonempty, let \(n'\) be the smallest subscript such that \(\mu(I_n^i) > 0\). Then assume first that \(x_n'\) is the midpoint of \(I_n^i\). Then set \(I_{n+1} = I_n^i\) where \(i \in \{1, 2\}\) is smallest possible such that \(\mu(I_n^i) > 0\). If \(x_n'\) is not the midpoint of \(I_n\), one has \(x_n' \in I_n^i, x_n' \in I_n^j, \{i, j\} = \{1, 2\}\). Set \(I_{n+1} = I_n^i\) if \(\mu(I_n^i) > 0\). Otherwise set \(I_{n+1} = I_n^j\). This defines \(I_{n+1} = [\xi_{n+1}, \eta_{n+1}]\), \(\xi_{n+1}, \eta_{n+1} \in (a, b) \cap D\). Set \(E_{n+1} = E \cap I_{n+1}\). In each of the above cases we have \(\mu(I_{n+1}) > 0\) since \(\mu(I_n) = \mu(I_n^i) + \mu(I_n^j) > 0\).

Observe that for each \(n, I_n\) has length \(2^{-(p+n)}\). Moreover if \(I_{n+1} = I_n^i\) and \(\mu(I_n^i) \leq 0\), then \(\mu(I_{n+1}) \leq \mu(I_n)\) where \(\{i, j\} = \{1, 2\}\). Set \(\{x\} = \bigcap_{n=0}^{\infty} I_n\) and notice that \(\bigcap_{n=0}^{\infty} E_n = E \cap \{x\}\).

Case 1. \(x \in E \cap D\). Then there exists \(N > 0\) such that for each \(n > N, x\) is the left (or right) endpoint of \(I_n\). Suppose that \(x\) is the left endpoint for \(n > N\). Then \(I_n = [\alpha_{n+p}(x), \beta_{n+p}(x)], I_n = I_{n-1}^1, \mu(I_{n-1}^1) \leq 0\). Hence \(\mu(I_{n-1}) \leq \mu(I_n)\) for all \(n > N\) which implies that
\[\liminf_{n \to \infty} [G(\beta_n(x)) - G(\alpha_n(x))] > 0. \]
This contradicts (ii). Assume next that x is a right endpoint for $n > N$. Again one has $\mu(I_{n-1}) \leq \mu(I_n)$ and $I_n = [\alpha'_{n+p}(x), \beta_{n+p}(x)]$ so

$$\lim \inf_{n \to \infty} (G(x) - G(\alpha_n(x))) > 0$$

which contradicts (i).

Case 2. $x \in E$, $x \notin D$. Then for each n, $I_n = [\alpha_{n+p}(x), \beta_{n+p}(x)]$ and $\mu(I_n) \leq \mu(I_{n+1})$ which again contradicts (ii).

Case 3. $x \notin E$. As in Case 2 we can write $I_n = [\alpha_{n+p}(x), \beta_{n+p}(x)]$ for all n. Consequently,

$$\lim \inf_{n \to \infty} 2^n(G(\beta_n(x)) - G(\alpha_n(x))) \geq 0$$

which contradicts (iv). This completes the proof.

It should be remarked that this result improves the lemma of N. Fine as given in [2, p. 407].

3. An application to Walsh series. In 1947, N. Fine in his classical paper on Walsh-Fourier series [2] considered the problem of determining when a Walsh series is the Walsh-Fourier series of a Lebesgue integrable function. It was conjectured that given a Walsh series which converges to an integrable function except on a countable set, the series is the Walsh-Fourier series of the function. This conjecture was proved in 1964 by R. Crittenden and V. Shapiro in [1]. Their proof was rather lengthy and involved an intricate application of the Baire category theorem. We offer a simplified proof using only the results in [2] together with the main theorem.

We now introduce some standard terminology and restate certain theorems from [2] which will be used in the sequel. Let ψ_k denote the kth Walsh function on the interval $[0, 1]$ and set $J_k(x) = \int_0^x \psi_k(t) \, dt$, $x \in [0, 1]$, for $k = 0, 1, \cdots$.

Theorem 1. If $\sum_{k=0}^{\infty} a_k \psi_k(x)$ converges at x, then so does $\sum_{k=0}^{\infty} a_k J_k(x)$.

From [2, p. 405] one has with slight modifications:

Theorem 2. If $(a_k)_{k=0}^{\infty}$ converges to zero and $L(x) = \sum_{k=0}^{\infty} a_k J_k(x)$ defines an essentially absolutely continuous function on $[0, 1]$, then $\sum_{k=0}^{\infty} a_k \psi_k(x)$ is the Walsh-Fourier series of $L'(x)$.

From the two theorems in [2, p. 406] one has:

Theorem 3. Let $(a_k)_{k=0}^{\infty}$ converge to zero, set $L(x) = \sum_{k=0}^{\infty} a_k J_k(x)$, $x \in [0, 1]$. Then this series converges for each $x \in D \cap [0, 1]$. Moreover for
each \(x \in [0, 1] \), \(L(\beta_n(x)) - L(\alpha_n(x)) = 2^{-n}S_2(x) \) which converges to zero uniformly in \(x \).

From these results together with the main theorem we now prove the conjecture.

Theorem 4. Let \(\sum_{n=0}^{\infty} a_n \psi_n(x) \) converge to a finite-valued integrable function \(f \) except on a countable set of points \(E \) in \([0, 1]\). Then this series is the Walsh-Fourier series of \(f \).

Proof. Set \(F(x) = \int_{0}^{x} f(t) \, dt \), \(x \in [0, 1] \), and fix \(\epsilon > 0 \). By the Vitali-Caratheodory theorem \([3, \text{p. 75}]\) one can select two absolutely continuous functions \(\phi_\epsilon \) and \(\psi_\epsilon \) on \([0, 1]\) such that

\[
| \phi_\epsilon(x) - F(x) | < \epsilon, \quad | \psi_\epsilon(x) - F(x) | < \epsilon, \quad x \in [0, 1],
\]

and the derivatives of \(\phi_\epsilon(x) \) (resp. \(\psi_\epsilon(x) \)) are less than (resp. greater than) \(f(x) \) whenever \(f(x) \neq -\infty \) (resp. \(f(x) \neq +\infty \)). For \(x \) in \(D \cap (0, 1) \), set \(G_\epsilon(x) = \phi_\epsilon(x) - L(x) \), \(H_\epsilon(x) = L(x) - \psi_\epsilon(x) \). The functions \(G_\epsilon \) and \(H_\epsilon \) exist by Theorem 3. By Theorem 3, \(G_\epsilon \) and \(H_\epsilon \) satisfy the hypothesis in the lemma. Hence \(G_\epsilon \) and \(H_\epsilon \) are monotone decreasing on \(D \cap (0, 1) \). Letting \(\epsilon \) tend to zero one has that \(F - L \) and \(L - F \) are monotone decreasing on \((0, 1) \cap D \). Hence \(F - L \) is constant on \((0, 1) \cap D \) so setting \(L(x) = F(x) + c, \ x \in (0, 1) \cap D \), we see that this equality extends by Theorem 3 to all \(x \) for which \(L(x) \) exists. By Theorem 1, \(L(x) \) exists for essentially all \(x \in E \). Consequently, \(L \) is essentially absolutely continuous on \([0, 1]\) so, by Theorem 2, \(\sum_{n=0}^{\infty} a_n \psi_n(x) \) is the Walsh-Fourier series of \(L'(x) = f(x) \).

Bibliography

Pennsylvania State University, University Park, Pennsylvania 16802