ON CATEGORIES OF QUOTIENTS

AARON KLEIN

Abstract. We construct a category of quotients over a category satisfying a condition similar to the Ore condition. Addition of quotients is briefly discussed.

In a previous paper [1] a theory of relations in categories of a general type was introduced. In trying to adapt the elegant approach of Hilton [2] to the nonabelian case, a difficulty is encountered, but Hilton's method works in the associative case, in which by [1] an Ore condition holds. In this case a generalization is given which seems to be of interest; it describes a construction of a category which is algebraically a sort of category of quotients. Finally, addition is briefly discussed. Notations and definitions of [1] are freely used.

Let C be a finitely complete [3] bicategory [4] with classes of monics ∂ and epics ∂. In [1] we have constructed a near-category σC with class of objects |σC| = |C| and with relations as morphisms. We employ the method of Hilton [2] in the nonabelian case, but we have to use pairs of coinitial morphisms.

With fixed objects A, B in C consider the collection φ(A, B) of pairs of morphisms (α, β), A ↠ X ↠ B, and declare (α, β) ~ (α', β') in φ(A, B) if and only if there are σ, σ' in ∂ that satisfy ασ = α'σ', βσ = β'σ'.

In [1] we have proved that the extension σC of C is a category if and only if a condition denoted (A) holds, and that condition reads as follows: For every ξ, η in C with common codomain and with ξ, η ∈ C there is a common right multiple ξv = ηv with v ∈ C.

1. If (A) holds in C then ~ is an equivalence in φ(A, B).

For, if (ασ, βσ) = (ασ', βσ') and (ατ, βτ) = (α'τ', β'τ') with σ's and τ's in C then, by (A) and the pullback condition, there are φ, ψ ∈ C such that σφ = τψ; hence τψ, σφ ∈ C and (ασφ, βσφ) = (α'τ'ψ, β'τ'ψ).

If (A) holds we denote Z(A, B) = φ(A, B)/~. Representatives for elements of Z(A, B) can be chosen according to: (α, β) ~ (α', β') in φ(A, B) if and only if the σ-parts in i-s-factorizations of {α, β} and {α', β'}, namely {α, β}i, {α', β'}i are equivalent monics. (For, if {α, β} = {ξ, η}ξ' and {α', β'} = {ξ, η}ξ' then there are...
\(\phi, \phi' \in S \) satisfying \(\xi \phi = \xi' \phi' \), hence \((\alpha \phi, \beta \phi) = (\alpha' \phi', \beta' \phi') \). The converse follows from the property of \(i \)-s-factorization.

We denote the equivalence class of \((\alpha, \beta) \) by \(\beta/\alpha \). Then if \(\sigma \in S \) and \(\alpha \sigma, \beta \sigma \) are defined, we have \(\beta/\alpha = \beta \sigma/\alpha \sigma \).

For \(\beta/\alpha \in Z(A, B) \) and \(\gamma/\beta' \in Z(B, C) \) we define \((\gamma/\beta')(\beta/\alpha) = \gamma \psi/\alpha \phi \) where \(\downarrow \psi, \phi, \beta', \beta \downarrow \) is a pullback. This composition is well defined (general proof later (IV)), it is associative and the classes \(1/1 \) are identities.

II. \(Z \) is a category and the mapping \(\alpha \to \alpha/1 \) is a covariant embedding of \(C \) into \(Z \).

The mapping \(\alpha \to \alpha/1 \) is one-to-one: if \(\alpha/1 = \beta/1 \) then \(\alpha \sigma = \beta \sigma' \), \(1 \sigma = 1 \sigma \) with \(\sigma, \sigma' \in S \) and, since \(S \) consists of epics only, this implies \(\alpha = \beta \).

An isomorphism between this \(Z \) and the category \(\mathfrak{D}_e \) constructed in [1] is given by assigning to \(\beta/\alpha \) of \(Z \) the relation \([\cdot, \xi, \eta] \) with \(\{\xi, \eta\} = \{\alpha, \beta\} \).

However, this method does not enable us to construct relations in the general case. But in the \((A) \)-case it is considerably generalized as follows.

III. Let \(C \) be a category with pullbacks (products not required). Let \(\mathfrak{D} \) be any subcategory of \(C \) with \(|\mathfrak{D}| = |C| \) and assume the following condition holds:

\((A) \mathfrak{D}: \) If \(\downarrow v, u, \xi \downarrow \) is a pullback in \(C \) and if \(\xi \in \mathfrak{D} \) then \(v \in \mathfrak{D} \).

(We require \(A \) to hold in pullbacks since we do not assume that \(xy \in \mathfrak{D} \) implies \(x \in \mathfrak{D} \).) For \(A, B \in |C| \) denote by \(\mathfrak{D}^\phi(A, B) \) the collection of pairs \((\alpha, \beta) \),

\[
A \leftarrow X \overset{\beta}{\rightarrow} B.
\]

We declare \((\alpha, \beta) \sim_\mathfrak{D} (\alpha', \beta') \) in \(\mathfrak{D}^\phi(A, B) \) if there are \(\delta, \delta' \) in \(\mathfrak{D} \) satisfying \((\alpha \delta, \beta \delta) = (\alpha' \delta', \beta' \delta') \). Then: \(\sim_\mathfrak{D} \) is an equivalence in \(\mathfrak{D}^\phi(A, B) \).

For, reflexivity follows from \(|C| = |\mathfrak{D}| \), symmetry is obvious, transitivity is similar to I.

We denote \(\mathfrak{D}^\phi(A, B) = \mathfrak{D}(A, B)/\sim_\mathfrak{D} \) and \(\beta/\alpha \) = the equivalence class of \((\alpha, \beta) \) (more precisely \(\mathfrak{D}^\phi(A, B), \beta_\mathfrak{D} /\alpha \)).

IV. Let \(\beta/\alpha \in \mathfrak{D}^\phi(A, B) \), \(\gamma/\beta' \in \mathfrak{D}^\phi(B, C) \); if \(\downarrow \psi, \phi, \beta', \beta \downarrow \) then \(\gamma \psi/\alpha \phi \) depends only on the equivalence classes \(\beta/\alpha \) and \(\gamma/\beta' \).

Proof. Let \((\alpha \delta, \beta \delta) = (\alpha_1 \delta_1, \beta_1 \delta_1) \) and \((\beta ' \epsilon, \gamma \epsilon) = (\beta_1 ' \epsilon_1, \gamma_1 \epsilon_1) \), with \(\delta ' \) and \(\epsilon \) in \(\mathfrak{D} \). We construct pullbacks

\[
\downarrow b, a, \phi, \delta \downarrow, \quad \downarrow c, d, \psi, \epsilon \downarrow, \quad \downarrow y, x, c, b \downarrow.
\]

Then \(b, c, x, y \in \mathfrak{D} \) by \((A)_\mathfrak{D} \). By juxtaposition of pullbacks, we obtain
The same process with the 1-indexed morphisms yields \(\downarrow dy, ax, \beta', \beta \downarrow \). By the uniqueness of pullbacks there is an invertible \(i \) that satisfies \(ax = ai_1x_1, dy = di_1y_1 \).

Therefore,

\[
(a\phi)(bx) = (ai_1\phi_1)(b_1x_1), \quad (\gamma\psi)(bx) = (ji_1\psi_1)(b_1x_1).
\]

Since \(\epsilon \in \mathcal{D} \) by \((A) \) \((\downarrow, 1, \iota^{-1}, 1 \downarrow \) and \(1 \in \mathcal{D}\)), we conclude

\[
(\alpha\phi, \gamma\psi) \sim (\alpha_1\phi_1, \gamma_1\psi_1).
\]

Now we define composition by \((\gamma/\beta')(\beta/\alpha) = \gamma\psi/\alpha\phi\) where \(\epsilon\). Theorem. \(\mathcal{E} \) with the above composition is a category with \(| \mathcal{E} | = | \mathcal{C} | \). The identity of \(\mathcal{A} \in \mathcal{E} \) in \(\mathcal{A} \in \mathcal{E} \) is \(1_1/1_1\). The mapping \(\alpha \rightarrow \alpha/1 \) of \(\mathcal{D} \) into \(\mathcal{E} \) is a covariant functor, and it is an embedding if and only if \(\mathcal{D} \) consists of epics only.

Proof. Associativity of composition follows by juxtaposition of pullbacks. The properties of the mapping \(\alpha \rightarrow \alpha/1 \) follow by using pullbacks of simple forms. The last statement: if \(\delta \in \mathcal{D} \) is not epic then there exist \(\alpha, \beta \) such that \(\alpha\delta = \beta\delta \) and \(\alpha \neq \beta \), yet \(\alpha/1 = \beta/1 \) by definition of \(\sim \). The other part of the proof is similar to II.

Denoting \((\beta/\alpha)^{-1} = \alpha/\beta \) we have an involution on \(\mathcal{E} \) and the factorization \(\beta/\alpha = (\beta/1)(\alpha/1)^{-1} \). If all morphisms in \(\mathcal{D} \) are epic then we may identify \(\mathcal{A} \in \mathcal{E} \) with \(\alpha/1 \) in \(\mathcal{E} \), and \(\mathcal{D} \) is a sort of "category of right-quotients" over \(\mathcal{C} \) (see [1, 2.1]). Moreover, if \(\mathcal{D} \) satisfies an extra condition "\(xy \in \mathcal{D} \) and \(y \in \mathcal{D} \) imply \(x \in \mathcal{D} \)," then \(\mathcal{D} \) consists exactly of the right-regular elements, namely \(\alpha\alpha^- = 1 \) if and only if \(\alpha \in \mathcal{D} \). To prove this we first observe that for \(\alpha \in \mathcal{D} \) we have \(\alpha\alpha^- = \alpha/\alpha = 1/1 \). The converse: if \((\alpha, \alpha) \sim (1, 1) \) then \((\alpha\delta, \alpha\delta) = (\delta', \delta') \) with \(\delta, \delta' \in \mathcal{D} \); hence \(\alpha\delta, \delta \in \mathcal{D} \), so \(\alpha \in \mathcal{D} \).

If \(\mathcal{D} \) does not satisfy the extra condition, then there are \(x, y \) such that \(xy \in \mathcal{D} \), \(x \in \mathcal{D} \), but then by definition of \(\sim \) we have \((x, x) \sim (1, 1) \) (since \((xy, xy) = (1xy, 1xy) \)) thus \(xx^- = 1 \) and \(x \in \mathcal{D} \).

We remark that even in the general case (nonepic \(\mathcal{D} \)) we have \(\alpha^{-} \alpha = 1 \) if and only if \(\alpha \) is monic.

If \(\mathcal{C} \) is a category with pullbacks then the subcategory of isomorphisms and \(\mathcal{C} \) itself are the two extremes for which \((A) \) holds. With the first the functor \(\alpha \rightarrow \alpha/1 \) is an embedding and only the isomorphisms of \(\mathcal{C} \) have the property \(xx^- = 1 \); even if \(x \) is a retraction we have \(xy = 1 \) but not \(xx^- = 1 \). (In the general case \(x^- \) is in the image of \(\mathcal{C} \), namely of the form \(y/1 \), iff \(x \) is a coretraction.)
The functor $C \rightarrow \mathfrak{C}_C$ is generally not an embedding. All the elements of C will have the property $xx^* = 1$ in \mathfrak{C}_C.

An intermediate category with (A) is the category of monics in C and in this case we generally do not have an embedding. The monics of C have invertible images by the mapping $\alpha \mapsto \alpha/1$.

An obvious example is the following. Let C be the multiplicative semigroup of positive integers (or nonzero integers). We take $D = C$ and we are in the epic case; the category \mathfrak{C}^D is the group of positive (nonzero) rational numbers.

Let $G : C \rightarrow \mathfrak{G}$ be a functor and \mathfrak{G} a category with an involution $(-)^*$. We ask about functors \tilde{G} commuting with the involutions $G(\beta/\alpha) = \tilde{G}(\alpha/\beta)^*$ and for which the following triangle is commutative

\[
\begin{array}{ccc}
C & \rightarrow & \mathfrak{G} \\
\downarrow \tilde{G} & & \\
\mathfrak{C}^D \\
\end{array}
\]

Since $\beta/\alpha = (\beta/1)(\alpha/1)^{-1}$, we must have

$$G(\beta/\alpha) = \tilde{G}(\beta/1)\tilde{G}(\alpha/1)^* = (G\beta)(G\alpha)^*.$$

For $\delta \in D$ we have $\delta/\delta = 1/1$ so $(G\delta)(G\delta)^*$ must be an identity. If this is the case then G is well defined since for $\beta/\alpha = \beta'/\alpha'$ we have $(\alpha\delta, \beta\delta) = (\alpha'\delta', \beta'\delta')$, so

$$\tilde{G}(\beta/\alpha) = (G\beta)(G\alpha)^* = (G\beta)(G\delta)(G\delta)^*(G\alpha)^* = G(\beta\delta)G(\alpha\delta)^* = G(\beta'\alpha')G(\alpha'\delta')^* = G(\beta'/\alpha').$$

If $\downarrow \psi, \phi, \beta, \alpha \downarrow$ then $\psi = G\phi(1/\beta)(1/\alpha) = 1/\psi$. So $(G\beta)^*G(\alpha) = \tilde{G}(1/\beta)\tilde{G}(1/\alpha) = \tilde{G}(\psi/\phi) = \tilde{G}(\psi/\phi)^{-1} = (G\psi)(G\phi)^*$. Moreover, this condition is sufficient for \tilde{G} to be a functor. Given $\beta/\alpha, \gamma/\beta'$ and $\downarrow \psi, \phi, \beta', \beta \downarrow$ we have $(\gamma/\beta')(\beta/\alpha) = \gamma/\phi\alpha\phi$; hence

$$\tilde{G}[(\gamma/\beta')(\beta/\alpha)] = \tilde{G}(\gamma/\phi)G(\alpha\phi)^* = (G\gamma)(G\phi)(G\alpha)^* = (G\gamma)(G\phi)^*(G\alpha)^* = (G\gamma)(G\phi)^*(G\alpha)^* = \tilde{G}[(\gamma/\beta')(\beta/\alpha)].$$

This concludes the proof

VI. \tilde{G} with the properties stated above exists if and only if $(G\delta)(G\delta)^* = 1$ for every $\delta \in D$ and $(G\beta)^*(G\alpha) = (G\psi)(G\phi)^*$ for every pullback $\downarrow \psi, \phi, \beta, \alpha \downarrow$ in C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We say that \(\mathcal{C} \) is a **category with addition** if for some pairs of objects \(A, B \) a partial operation \(+ \) is defined on \(\mathcal{C}(A, B) \) which is distributive in the following sense: if \(\alpha, \beta \in \mathcal{C}(A, B) \) and \(\alpha + \beta \) is defined, then for every \(\gamma : B \to C, \delta : D \to A \), \(\gamma \alpha + \gamma \beta \) and \(\alpha \delta + \beta \delta \) are defined and \(\gamma (\alpha + \beta) = \gamma \alpha + \gamma \beta \), \((\alpha + \beta) \delta = \alpha \delta + \beta \delta \). (A known example of addition is the Fitting multiplication of morphisms in group theory.)

Let \(\mathcal{C} \) be a category with pullbacks and \(\mathcal{D} \) a subcategory with \(|\mathcal{D}| = |\mathcal{C}| \) and \((A)_{\mathcal{D}} \). Let \(\beta/\alpha, \beta'/\alpha' \in (A)_{\mathcal{D}} \) and consider a pullback \(\downarrow \psi, \phi, \alpha' \), \(\alpha \downarrow \). If \(\beta \phi + \beta' \psi \) is defined in \(\mathcal{C} \) then we define

\[
\frac{\beta/\alpha + \beta'/\alpha'}{\theta} = (\beta \phi + \beta' \psi) / \theta
\]

where \(\theta = \alpha \phi = \alpha' \psi \).

For instance if \(\alpha \) is monic and \(\beta + \beta' \) is defined, then \(\beta/\alpha + \beta'/\alpha' \) is defined and \(= (\beta + \beta')/\alpha \).

VII. \(+ \) is well defined in \(\mathcal{D} \) and it extends the addition in \(\mathcal{C} \).

Proof. If \(b/a = \beta/\alpha \) and \(b'/a' = \beta'/\alpha' \) then \((a \tau, \beta \sigma) = (a \tau, \beta \sigma) \) and \((a' \sigma', \beta' \sigma') = (a' \tau', b' \tau') \) with \(\sigma, \sigma', \tau, \tau' \in \mathcal{D} \). Now consider the following pullbacks

so by \((A)_{\mathcal{D}} \) we have \(\beta \phi + \beta' \psi \nu \nu \) defined and

\[
\beta \phi \nu \nu + \beta' \psi \nu \nu = \beta \phi \nu \nu + \beta' \psi \nu \nu = \beta \sigma \nu \nu + \beta' \sigma' \nu \nu \nu'
\]

\[
= (b \tau) \nu \nu + (b' \tau') \nu \nu' \nu'.
\]

By the extended definition of \(+ \) and, considering the big pullback, we have \(b \tau / a \tau + b' \tau' / a' \tau' \) defined and \(= (b \phi \nu \nu + b' \psi \nu \nu') / \eta \) where \(\eta = \alpha \sigma \nu \nu = \alpha' \sigma' \nu \nu \nu \). But \(\tau, \tau' \in \mathcal{D} \), hence \(b \tau / a \tau = b / a \) and \(b' \tau' / a' \tau' = b' / a' \), so, since \(w, v \in \mathcal{D} \), we conclude

\[
b/a + b'/a' = (b \phi \nu \nu + b' \psi \nu \nu') / \alpha \phi \nu \nu = (b \phi + b' \psi) \nu \nu / \alpha \phi \nu \nu
\]

\[
= (b \phi + b' \psi) / \alpha \phi = \beta / \alpha + \beta'/\alpha'.
\]

The fact \(\alpha/1 + \alpha'/1 = (\alpha + \alpha')/1 \) is obvious.

As Hilton pointed out [2], even in the abelian case and with \(\mathcal{D} \) the
class of epics, the extended addition is not distributive. At least with \(\delta \in \mathbb{C} \) we have

\[
(\delta/1)(\beta/\alpha + \beta'/\alpha') = (\delta/1)(\beta/\alpha) + (\delta/1)(\beta'/\alpha'),
\]

since, with the notation above,

\[
(\delta/1)(\beta/\alpha + \beta'/\alpha') = (\delta/1)(\beta \Phi + \beta' \Psi)/\alpha \Phi = \delta(\beta \Phi + \beta' \Psi)/\alpha \Phi
\]

\[
= (\delta \beta \Phi + \delta \beta' \Psi)/\alpha \Phi = \delta \beta/\alpha + \delta \beta'/\alpha'
\]

\[
= (\delta/1)(\beta/\alpha) + (\delta/1)(\beta'/\alpha').
\]

Let us compare

\[
(\delta/\gamma)(\beta/\alpha + \beta'/\alpha'), \quad (\delta/\gamma)(\beta/\alpha) + (\delta/\gamma)(\beta'/\alpha')
\]
in the general case. Again \(\beta/\alpha + \beta'/\alpha' = (\beta \Phi + \beta' \Psi)/\theta \). Let

\[
\downarrow \xi', \xi, \gamma, \beta \Phi + \beta' \Psi \downarrow
\]

and then the left side is \(\delta \xi'/\theta \xi \). To compute the right-hand side, let \(\downarrow s, t, \gamma, \beta \downarrow \) and \(\downarrow s', t', \gamma, \beta' \downarrow \); and then we have to construct the sum \(\delta s/\alpha t + \delta s'/\alpha t' \). But here we encounter a question of existence since, having \(\downarrow x', x, \alpha t', \alpha t \), we need the sum \(\delta x + \delta x' \) in \(\mathbb{C} \). We have \(\alpha x = \alpha t' x' \); hence there is a \(\lambda \) satisfying \(\alpha x = \phi \lambda, t' x' = \psi \lambda \). By our assumptions \(\beta \Phi \lambda + \beta' \Psi \lambda = \beta t x + \beta' t' x' = \gamma s x + \gamma s' x' \) is defined. Here we need an additional assumption, and this case could be, for instance, the assumption of Kurosh et al. [5] that for \(\gamma \) monic, if \(\gamma f + \gamma g \) is defined then \(f + g \) is defined. Assuming this we have \(\delta x + \delta x' \) defined, provided that \(\gamma \) is monic. Then, by \((\beta \Phi + \beta' \Psi) \lambda = \gamma (s x + s' x') \), there is a \(\mu \) for which \(\xi \mu = \lambda, \xi' \mu = s x + s' x' \), hence

\[
(\delta/\gamma)(\beta/\alpha) + (\delta/\gamma)(\beta'/\alpha') = \delta \xi' \mu/\alpha \Phi \xi \mu,
\]

whereas \((\delta/\gamma)(\beta/\alpha + \beta'/\alpha') = \delta \xi'/\alpha \Phi \xi \). Unfortunately, in the general case \(\mu \in \mathbb{D} \), otherwise we would have at least left distributivity for \(\delta/\gamma \) with \(\gamma \) monic.

Let us compare

\[
(\beta/\alpha + \beta'/\alpha')(\delta/\gamma), \quad (\beta/\alpha)(\delta/\gamma) + (\beta'/\alpha')(\delta/\gamma).
\]

Assume that the right-hand side is defined; so if \(\downarrow v, u, \delta, \alpha \downarrow \), then \((\beta/\alpha)(\delta/\gamma) \beta u/\gamma v \) and similarly \((\beta'/\alpha')(\delta/\gamma) = \beta u'/\gamma v' \), thus with \(\downarrow y, \gamma, \gamma v, \gamma v \downarrow \) we have \(\beta u y + \beta' u' y' \) defined in \(\mathbb{C} \). If the left side is defined, then with \(\downarrow \psi, \phi, \alpha', \alpha \downarrow \) we have \(\beta/\alpha + \beta' \alpha' = (\beta \Phi + \beta' \Psi) / \theta \), \(\theta = \alpha \Phi = \alpha' \Psi \). Therefore, with \(\downarrow \eta, \xi, u, \phi \downarrow \), \((\beta/\alpha + \beta'/\alpha)(\delta/\gamma) = (\beta \Phi + \beta' \Psi) \xi/\gamma v \eta \). Since \(\alpha \Phi = \alpha' \Psi \), there is a pullback \(\downarrow \eta', \xi, u', \psi \downarrow \)
such that $v'\eta' = v\eta$. So $\gamma v\eta = \gamma v'\eta'$ and a μ exists such that $\gamma\mu = \eta$, $y'\mu = \eta'$, hence

$$(\beta/\alpha + \beta'/\alpha')(\delta/\gamma) = (\beta w\eta + \beta' w'\eta')/\gamma v\eta = (\beta w\gamma + \beta' w'\gamma')\mu/\gamma v\eta$$

and $\gamma v\eta = (\gamma v\gamma)\mu = (\gamma v'\gamma')\mu$. Again μ is not necessarily in \mathcal{D}, otherwise we could have right distributivity.

VIII. In the particular case $\mathcal{D} = \mathcal{C}$, assuming that the involved sums are defined, we have both right- and left-distributivity.

IX. In the bicategorical case ($\mathcal{D} = \mathcal{S}$), assuming that the involved sums are defined, we have at least inequalities

$$[S][R] + [R'] \geq [S][R] + [S][R'];$$

$$[R][T] + [R'][T] \geq ([R] + [R'])[T],$$

for relations in \mathcal{O}_e.

REFERENCES

