On the coefficients of Bazilevič functions
HTML articles powered by AMS MathViewer
- by F. R. Keogh and Sanford S. Miller
- Proc. Amer. Math. Soc. 30 (1971), 492-496
- DOI: https://doi.org/10.1090/S0002-9939-1971-0283191-7
- PDF | Request permission
Abstract:
Let $B(\alpha )$ denote the class of normalized $(f(0) = 0,f’(0) = 1)$, Bazilevič functions of type $\alpha$ defined in $\Delta :|z| < 1,{\text {i.e.}}f(z) = {[\alpha \smallint _0^zP(\zeta )g{(\zeta )^\alpha }{\zeta ^{ - 1}}d\zeta ]^{1/\alpha }}$ where $g(\zeta )$ is starlike in $\Delta ,P(\zeta )$ is regular with $\Re P(\zeta ) > 0$ in $\Delta$ and $\alpha > 0$. Let ${B_m}(\alpha )$ denote the subclass of $B(\alpha )$ which is m-fold symmetric $(f({e^{2\pi i/m}}z) = {e^{2\pi i/m}}f(z),m = 1,2, \cdots )$. Functions in $B(\alpha )$ have been shown to be univalent. The authors obtain sharp coefficient inequalities for functions in ${B_m}(1/N)$ where N is a positive integer. In addition an example of a Bazilevič function which is not close-to-convex is given.References
- I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. (N.S.) 37(79) (1955), 471–476 (Russian). MR 0072949
- A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962), 61–63 (French). MR 147636, DOI 10.4064/ap-12-1-61-63 G. Birkhoff and G. Rota, Ordinary differential equations, 2nd, ed., Blaisdell, Waltham, Mass., 1969. MR 38 #4737.
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259–269. MR 147638, DOI 10.1307/mmj/1028998726
- Christian Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173 (German). MR 180669, DOI 10.1515/crll.1965.218.159
- J. Zamorski, On Bazilevič schlicht functions, Ann. Polon. Math. 12 (1962), 83–90. MR 143896, DOI 10.4064/ap-12-1-83-90
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 30 (1971), 492-496
- MSC: Primary 30.43
- DOI: https://doi.org/10.1090/S0002-9939-1971-0283191-7
- MathSciNet review: 0283191