ON THE COEFFICIENTS OF BAZILEVIĆ FUNCTIONS

F. R. KEOGH AND SANFORD S. MILLER

Abstract. Let \(B(\alpha) \) denote the class of normalized \((f(0) = 0, f'(0) = 1)\) Bazilević functions of type \(\alpha \) defined in \(\Delta : |z| < 1 \), i.e. \(f(z) = \left[\alpha \beta P(\zeta) g(\zeta) \zeta^{1-1-i\beta} \right]^{1/\alpha} \) where \(g(z) \) is starlike in \(\Delta \), \(P(\zeta) \) is regular with \(\Re P(\zeta) > 0 \) in \(\Delta \) and \(\alpha > 0 \). Let \(B_m(\alpha) \) denote the subclass of \(B(\alpha) \) which is \(m \)-fold symmetric \((f(e^{2\pi i m z}) = e^{2\pi i m f(z)}, m = 1, 2, \cdots)\).

Functions in \(B(\alpha) \) have been shown to be univalent. The authors obtain sharp coefficient inequalities for functions in \(B_m(1/N) \) where \(N \) is a positive integer. In addition an example of a Bazilević function which is not close-to-convex is given.

Let \(S \) denote the class of functions

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

that are univalent in the unit disk \(\Delta : |z| < 1 \). If \(g(z) \) is starlike in \(\Delta \), \(P(z) \) is regular with \(\Re P(z) > 0 \) in \(\Delta \) and \(\alpha > 0 \), then the function

\[
f(z) = \left[\alpha \int_{0}^{z} P(\xi) g(\xi) \xi^{1-\xi-i\beta} d\xi \right]^{1/\alpha}
\]

has been shown by Bazilević [1] (see also Pommerenke [6]) to be a regular and univalent function in \(\Delta \). The powers appearing in the formula are meant as principal values. We shall call a function in \(S \) satisfying (1) a Bazilević function of type \(\alpha \) and denote the class of such functions by \(B(\alpha) \). Note that \(B(1) \) is the class of normalized close-to-convex functions.

A function \(f(z) \) analytic in \(\Delta \) is said to be \(m \)-fold symmetric \((m = 2, 3, \cdots)\) if \(f(e^{2\pi i m z}) = e^{2\pi i m f(z)} \). In particular, every odd \(f(z) \) is 2-fold symmetric. Let \(S_m \) denote the subclass of \(S \) consisting of those \(f(z) \) that are \(m \)-fold symmetric. We similarly define \(B_m(\alpha) \). A simple argument shows that \(f \in S_m \) is characterized by having a power series of the form \(f(z) = z + a_{m+1} z^{m+1} + a_{2m+1} z^{2m+1} + \cdots \).

The Bieberbach conjecture remains unsettled for functions in \(B(\alpha) \) except for the case \(\alpha = 1/N \), where \(N \) is a positive integer (Zamorski

Received by the editors September 8, 1970.

AMS 1970 subject classifications. Primary 30A32, 30A34.

Key words and phrases. Univalent, Bazilević functions, close-to-convex functions, \(m \)-fold symmetric, Bieberbach conjecture, majorization.

1 The research of this author was supported by the National Science Foundation under grant number GP-19533.
C. Pommerenke [5] has obtained sharp coefficient inequalities for functions in $B_m(1)$. In this paper we shall be concerned mainly with obtaining sharp coefficient inequalities for functions in $B_m(1/N)$. The method is different from the methods of Zamorski and Pommerenke and our results include theirs.

Many of the properties of Bazilevič functions of type α, $0 < \alpha < 1$, coincide with properties of close-to-convex functions, including some of the results of this paper. We will show, at the end of the paper, an example of a Bazilevič function which is not close-to-convex.

The notation $g(z) \ll h(z)$ ("$g(z)$ is majorized by $f(z)$") will mean that if $g(z) = \sum_0^\infty b_n z^n$ and $h(z) = \sum_0^\infty c_n z^n$ then $|b_n| \leq c_n$ for $n = 0, 1, \cdots$ (see, for example, [3, p. 69]).

We shall need the following lemmas, the first of which is well known.

Lemma 1. (a) $\psi \in S_m$ if and only if $\psi(z) = \left[f(z^m) \right]^{1/m}$ where $f \in S$. (b) $\psi(z)$ is m-fold symmetric and starlike if and only if $\psi(z) = \left[f(z^m) \right]^{1/m}$ where $f(z)$ is starlike.

Lemma 2. If $f(z)$ is m-fold symmetric and starlike and $\gamma > 0$ then

$$[f(z)/z]^{\gamma} \ll \left| f'(0) \right|^{\gamma(1 - z^m)^{-2\gamma/m}}.$$

Proof. A function $f(z)$ which is m-fold symmetric and starlike has a Herglotz representation given by

$$\log \frac{f(z)}{zf'(0)} = \int_0^{2\pi} \log \frac{1}{(1 - z^m e^{-i\phi})^{2/m}}d\mu(\phi),$$

where $\mu(\phi)$ is nondecreasing on $[0, 2\pi]$ and $\mu(2\pi) - \mu(0) = 1$. Thus

$$\log \frac{f(z)}{zf'(0)} = \frac{2}{m} \int_0^{2\pi} \sum_{n=1}^\infty \frac{z^m e^{-in\phi}}{n} d\mu(\phi)$$

$$= \frac{2}{m} \sum_{n=1}^\infty \left[\int_0^{2\pi} e^{-in\phi} d\mu(\phi) \right] \frac{z^m}{n} \ll \frac{2}{m} \sum_{n=1}^\infty \frac{z^m}{n},$$

and consequently

$$\log(f(z)/zf'(0)) \ll \log(1 - z^m)^{-2/m}.$$

If $\gamma > 0$, then

$$\gamma \log(f(z)/zf'(0)) \ll \gamma \log(1 - z^m)^{-2\gamma/m},$$

or

$$\log[\left| f(z)/zf'(0) \right|^\gamma] \ll \log(1 - z^m)^{-2\gamma/m}.$$
Since exponentiation preserves the majorization property we obtain
\[f(z)/zf'(0) \approx (1 - z^m)^{-2/m}, \] which is equivalent to the desired result.

Theorem 1. \(\phi(z) \in B_m(\alpha) \) if and only if
\[
\phi(z) = [f(z^m)]^{1/m}
\]
where \(f(z) \in B_1(\alpha/m) \).

Proof. (i) If \(\phi(z) \in B_m(\alpha) \), then on differentiating (1) we obtain
\[
z\phi'(z)\phi(z)^{-1} = g(z)^aP(z),
\]
where \(g \) is starlike and \(\text{Re } P(z) > 0 \). By Lemma 1 (a) there exists an \(f \in S \) satisfying (2), and substitution of (2) in (3) yields
\[
z^m f'(z^m)f(z^m)^{a/m-1} = g(z)^aP(z).
\]
Replacing \(z \) by \(e^{2k \pi i/m}z \) we have
\[
z^m f'(z^m)f(z^m)^{a/m-1} = g(e^{2k \pi i/m}z)^aP(e^{2k \pi i/m}z),
\]
for \(k = 0, 1, \ldots, m-1 \). If we multiply the \(m \) equations in (4) and then take the \(m \)th root we obtain
\[
z^m f'(z^m)f(z^m)^{a/m-1} = \left[\prod_{k=0}^{m-1} g(e^{2k \pi i/m}z)^aP(e^{2k \pi i/m}z) \right]^{1/m}.
\]
It is easily verified that the function \(\left[\prod_{k=0}^{m-1} g(e^{2k \pi i/m}z) \right]^{1/m} \) is \(m \)-fold symmetric and starlike and hence, by Lemma 1 (b), can be written as \(h(z^m)^{1/m} \) where \(h \) is starlike. It is also easily verified that
\[
\prod_{k=0}^{m-1} P(e^{2k \pi i/m}z)^{1/m} = c_0 + c_m z^m + \cdots = Q(z^m),
\]
say, where \(\text{Re } Q(z) > 0 \). Thus we have
\[
z^m f'(z^m)f(z^m)^{a/m-1} = h(z^m)^{a/m}Q(z^m),
\]
or \(f \in B(\alpha/m) \).

(ii) Conversely, if \(f \in B(\alpha/m) \) we have
\[
zf'(z)f(z)^{a/m-1} = h(z)^{a/m}Q(z),
\]
where \(h \) is starlike and \(\text{Re } Q(z) > 0 \). Thus
\[
z^m f'(z^m)f(z^m)^{a/m-1} = h(z^m)^{a/m}Q(z^m)
\]
and, if we let \(\phi(z) = [f(z^m)]^{1/m} \), we obtain
\[
z\phi'(z)\phi(z)^{-1} = [h(z^m)^{1/m}]^{a}Q(z^m).
\]
By Lemma 1 (b), \(g(z) = [h(z^m)]^{1/m} \) is \(m \)-fold symmetric starlike, and if we write \(P(z) = Q(z^m) \) we have
\[
z^k f'(z) f(z)^{m-1} = g(z)^m P(z).
\]
Thus \(f(z) \in B_m(\alpha) \), and this completes the proof of the theorem.

Theorem 2. If \(f(z) \in B_m(\alpha) \), then \(\left[f(z)/z \right]^\alpha \ll (1 - z^m)^{-2\alpha/m} \).

Proof. The function
\[
F(z) = \left[f(z)/z \right]^\alpha = 1 + A_1 z^m + A_2 z^{2m} + \cdots
\]
satisfies the differential equation
\[
z F'(z) + \alpha F(z) = \alpha f'(z) f(z)^{\alpha-1}/z^{\alpha-1},
\]
or, using (5),
\[
z F'(z) + \alpha F(z) = \alpha \left[[h(z^m)]^{1/m}/z \right]^\alpha Q(z^m),
\]
where \([h(z^m)]^{1/m} \) is \(m \)-fold symmetric and starlike and \(\Re Q(z^m) > 0 \).

Hence, by Lemma 2, we have
\[
[[h(z^m)]^{1/m}/z \right]^\alpha \ll \left| h'(0) \right|^{\alpha/m} (1 - z^m)^{-2\alpha/m}.
\]
Also, if \(Q(z^m) = c_0 + c_m z^m + c_2 z^{2m} + \cdots \) then
\[
Q(z^m) \ll \left| c_0 \right| \frac{1 + z^m}{1 - z^m}
\]
[4, p. 170]. Since multiplication preserves the majorization property, (6), (7) and (8) yield
\[
z F'(z) + \alpha F(z) \ll \alpha \left| h'(0) \right|^{\alpha/m} \left| c_0 \right| \frac{1 + z^m}{(1 - z^m)^{1+2\alpha/m}}.
\]
Setting \(z = 0 \) in (6) we obtain \(\alpha = \frac{\alpha [h'(0)]^{\alpha/m} c_0}{} \), and consequently
\[
z F'(z) + \alpha F(z) \ll \alpha \frac{1 + z^m}{(1 - z^m)^{1+2\alpha/m}}.
\]

On comparing coefficients we have
\[
| (mn + \alpha) A_n | \leq \alpha \left[\begin{pmatrix} 2\alpha/m + n \\ n \end{pmatrix} + \begin{pmatrix} 2\alpha/m + n - 1 \\ n - 1 \end{pmatrix} \right],
\]
\[
| A_n | \leq \begin{pmatrix} 2\alpha/m + n - 1 \\ n \end{pmatrix},
\]
or equivalently, \(\left[f(z)/z \right]^\alpha \ll (1 - z^m)^{-2\alpha/m} \).
Corollary. If \(\phi \in B_m(1/N) \), where \(N \) is a positive integer and
\[\phi(z) = z + a_{m+1}z^{m+1} + \cdots \]
then
\[
(9) \quad |a_{mn+1}| \leq \left(\frac{2/m + n - 1}{n} \right).
\]
In particular for \(\phi \in B(1/N) \) we have \(|a_n| \leq n \) and for \(\phi \in B_2(1/N) \) we have \(|a_{2n+1}| \leq 1 \).

Proof. With \(\alpha = 1/N \) we have
\[
|\phi(z)/z|^{1/N} \ll \left(1 - z^n \right)^{-2/m}.
\]
Multiplying this result by itself \(N \) times we obtain \(\phi(z)/z \ll \left(1 - z^n \right)^{-2/m} \), which is equivalent to the desired result.

The inequality (9) is sharp, as can be seen by considering the function
\[
z(1-z^n)^{-2/m} \text{ which is in } B_m(1/N).
\]
We conclude by constructing an example of a function \(f \in B(1/2) \) such that \(f \) is not close-to-convex. With an appropriate \(c > 0 \), let
\(w = \phi(z) = z + \cdots \) be the odd close-to-convex function that maps \(\Delta \) onto the \(w \)-plane slit along the half-lines \(\Re w \geq 0, \Im w = c \) and \(\Re w \leq 0, \Im w = -c \). Since \(\phi \in B_2(1) \), by Theorem 1 we have \(\phi(z) = [f(z^2)]^{1/2} \), where \(f(z) \in B(1/2) \). But the transformation \(\zeta = \xi + in = f(z) \) maps \(\Delta \) onto the \(\zeta \)-plane slit along the portion of the parabola
\(\xi = (\eta/2c)^2 - c^2 \) defined for \(\eta \geq 0 \), and this slit clearly cannot be expressed as a union of half-lines. It follows by a well-known geometric criterion (see, for example, Bielecki and Lewandowski [2, p. 61]) that the domain is not close-to-convex.

References

University of Kentucky, Lexington, Kentucky 40506

State University of New York, Brockport, New York 14420

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use