Subparacompactness and $G_{\delta }$-diagonals in Arhangel′skiĭ’s class $\textrm {MOBI}$
HTML articles powered by AMS MathViewer
- by H. R. Bennett and E. S. Berney
- Proc. Amer. Math. Soc. 30 (1971), 573-577
- DOI: https://doi.org/10.1090/S0002-9939-1971-0283760-4
- PDF | Request permission
Abstract:
In this note it is shown that a topological space in Arhangel’skiĭ’s class MOBI need not be subparacompact nor have a ${G_\delta }$-diagonal.References
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169 H. R. Bennett, Quasi-developable spaces, Dissertation, Arizona State University, Tempe, Ariz., 1968.
- H. R. Bennett, On Arhangel′skiĭ’s class $\textrm {MOBI}$, Proc. Amer. Math. Soc. 26 (1970), 178–180. MR 267523, DOI 10.1090/S0002-9939-1970-0267523-0
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- Carlos J. R. Borges, On metrizability of topological spaces, Canadian J. Math. 20 (1968), 795–804. MR 231355, DOI 10.4153/CJM-1968-078-1
- Dennis K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655–663. MR 250269, DOI 10.1090/S0002-9939-1969-0250269-4
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Sitiro Hanai, On open mappings. II, Proc. Japan Acad. 37 (1961), 233–238. MR 126822
- R. E. Hodel, A note on subparacompact spaces, Proc. Amer. Math. Soc. 25 (1970), 842–845. MR 263024, DOI 10.1090/S0002-9939-1970-0263024-4
- David J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc. 22 (1969), 557–558. MR 248761, DOI 10.1090/S0002-9939-1969-0248761-1
- M. J. Mansfield, On countably paracompact normal spaces, Canadian J. Math. 9 (1957), 443–449. MR 87921, DOI 10.4153/CJM-1957-052-5
- Louis F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796–799. MR 99647, DOI 10.1090/S0002-9939-1958-0099647-X
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 30 (1971), 573-577
- MSC: Primary 54.50
- DOI: https://doi.org/10.1090/S0002-9939-1971-0283760-4
- MathSciNet review: 0283760