The generalized inverse of a nonnegative matrix
HTML articles powered by AMS MathViewer
- by R. J. Plemmons and R. E. Cline
- Proc. Amer. Math. Soc. 31 (1972), 46-50
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285541-5
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 39 (1973), 651.
Abstract:
Necessary and sufficient conditions are given in order that a nonnegative matrix have a nonnegative Moore-Penrose generalized inverse.References
- A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667–699. MR 179192
- Randall E. Cline, Representations for the generalized inverse of a partitioned matrix, J. Soc. Indust. Appl. Math. 12 (1964), 588–600. MR 172890
- Randall E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182–197. MR 227184, DOI 10.1137/0705015
- D. Ž. Djoković, Note on nonnegative matrices, Proc. Amer. Math. Soc. 25 (1970), 80–82. MR 257114, DOI 10.1090/S0002-9939-1970-0257114-X
- Peter Flor, On groups of non-negative matrices, Compositio Math. 21 (1969), 376–382. MR 257115
- T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), 15–22. MR 110185, DOI 10.1137/1002004
- R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 69793
- R. Penrose, On best approximation solutions of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17–19. MR 74092
- R. J. Plemmons, Graphs and nonnegative matrices, Linear Algebra Appl. 5 (1972), 283–292. MR 313109, DOI 10.1016/0024-3795(72)90009-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 46-50
- MSC: Primary 15.15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285541-5
- MathSciNet review: 0285541