Primary modules determined by indecomposable idempotent endomorphisms.
HTML articles powered by AMS MathViewer
- by Robert W. Stringall
- Proc. Amer. Math. Soc. 31 (1972), 54-56
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285608-1
- PDF | Request permission
Abstract:
A faithful primary module over a complete discrete valuation ring is determined up to isomorphism by any subring of the endomorphism ring of the module which contains all the indecomposable indempotent endomorphisms.References
- Frank Castagna, Sums of automorphisms of a primary abelian group, Pacific J. Math. 27 (1968), 463–473. MR 237639
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- R. S. Pierce, Endomorphism rings of primary Abelian groups, Proc. Colloq. Abelian Groups (Tihany, 1963) Akadémiai Kiadó, Budapest, 1964, pp. 125–137. MR 0172922
- R. S. Pierce, Homomorphisms of primary abelian groups, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 215–310. MR 0177035
- R. W. Stringall, Decompositions of Abelian $p$-groups, Proc. Amer. Math. Soc. 28 (1971), 409–410. MR 274582, DOI 10.1090/S0002-9939-1971-0274582-9
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 54-56
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285608-1
- MathSciNet review: 0285608