Oscillation theorems for second-order differential equations with functional arguments
HTML articles powered by AMS MathViewer
- by Curtis C. Travis
- Proc. Amer. Math. Soc. 31 (1972), 199-202
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285789-X
- PDF | Request permission
Abstract:
The oscillatory behavior of $Y''(t) + P(t)Y(g(t)) = 0$ where $g(t) \to \infty$ as $t \to \infty$ is investigated. Sufficient conditions for the oscillation of $Y’(t)$ and $Y(t)$ are developed.References
- Nam P. Bhatia, Some oscillation theorems for second order differential equations, J. Math. Anal. Appl. 15 (1966), 442–446. MR 203164, DOI 10.1016/0022-247X(66)90102-8
- John S. Bradley, Oscillation theorems for a second-order delay equation, J. Differential Equations 8 (1970), 397–403. MR 268482, DOI 10.1016/0022-0396(70)90013-6
- Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57–61. MR 32065
- Zeev Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445. MR 87816, DOI 10.1090/S0002-9947-1957-0087816-8
- Paul Waltman, A note on an oscillation criterion for an equation with a functional argument, Canad. Math. Bull. 11 (1968), 593–595. MR 237916, DOI 10.4153/CMB-1968-071-2
- Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117. MR 28499, DOI 10.1090/S0033-569X-1949-28499-6
- Aurel Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–380. MR 42005, DOI 10.2307/2372182
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 199-202
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285789-X
- MathSciNet review: 0285789